Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering

California Polytechnic State University, San Luis Obispo

2018

Biomechanics

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Hip And Knee Biomechanics For Transtibial Amputees In Gait, Cycling, And Elliptical Training, Greg Orekhov Dec 2018

Hip And Knee Biomechanics For Transtibial Amputees In Gait, Cycling, And Elliptical Training, Greg Orekhov

Master's Theses

Transtibial amputees are at increased risk of contralateral hip and knee joint osteoarthritis, likely due to abnormal biomechanics. Biomechanical challenges exist for transtibial amputees in gait and cycling; particularly, asymmetry in ground/pedal reaction forces and joint kinetics is well documented and state-of-the-art passive and powered prostheses do not fully restore natural biomechanics. Elliptical training has not been studied as a potential exercise for rehabilitation, nor have any studies been published that compare joint kinematics and kinetics and ground/pedal reaction forces for the same group of transtibial amputees in gait, cycling, and elliptical training. The hypothesis was that hip and knee …


Inverse Dynamic Analysis Of Acl Reconstructed Knee Joint Biomechanics During Gait And Cycling Using Opensim, Megan V. Pottinger Aug 2018

Inverse Dynamic Analysis Of Acl Reconstructed Knee Joint Biomechanics During Gait And Cycling Using Opensim, Megan V. Pottinger

Master's Theses

ACL (anterior cruciate ligament) injuries of the knee joint alter biomechanics and may cause abnormal loading conditions that place patients at a higher risk of developing osteoarthritis (OA). There are multiple types of ACL reconstruction (ACLR), but all types aim to restore anterior tibial translation and internal tibial rotation following surgery. Analyzing knee joint contact loads provide insight into the loading conditions following ACLR that may contribute to the long-term development of OA. Ten ACLR subjects, who underwent the same reconstruction, performed gait and cycling experiments while kinematic and kinetic data were collected. Inverse dynamic analyses were performed on processed …


Effects Of Game Pitch Count And Body Mass Index On Pitching Biomechanics In 9-To 10-Year-Old Baseball Athletes, Jim D. Darke, Eshan M. Dandekar, Arnel L. Aguinaldo, Scott J. Hazelwood, Stephen M. Klisch Apr 2018

Effects Of Game Pitch Count And Body Mass Index On Pitching Biomechanics In 9-To 10-Year-Old Baseball Athletes, Jim D. Darke, Eshan M. Dandekar, Arnel L. Aguinaldo, Scott J. Hazelwood, Stephen M. Klisch

Biomedical Engineering

Background: Pitching while fatigued and body composition may increase the injury risk in youth and adult pitchers. However, the relationships between game pitch count, biomechanics, and body composition have not been reported for a study group restricted to 9-to 10-year-old athletes.

Hypothesis: During a simulated game with 9-to 10-year-old athletes, (1) participants will experience biomechanical signs of fatigue, and (2) shoulder and elbow kinetics will correlate with body mass index (BMI).

Study Design: Descriptive laboratory study. Methods: Thirteen 9-to 10-year-old youth baseball players pitched a simulated game (75 pitches). Range of motion and muscular output tests were conducted before and …


Effects Of Game Pitch Count And Body Mass Index On Pitching Biomechanics In 9- To 10-Year-Old Baseball Athletes, Scott Hazelwood, Jim D. Darke, Eshan M. Dandekar, Arnel L. Aguinaldo, Stephen M. Klisch Apr 2018

Effects Of Game Pitch Count And Body Mass Index On Pitching Biomechanics In 9- To 10-Year-Old Baseball Athletes, Scott Hazelwood, Jim D. Darke, Eshan M. Dandekar, Arnel L. Aguinaldo, Stephen M. Klisch

Biomedical Engineering

Background:

Pitching while fatigued and body composition may increase the injury risk in youth and adult pitchers. However, the relationships between game pitch count, biomechanics, and body composition have not been reported for a study group restricted to 9- to 10-year-old athletes.

Hypothesis:

During a simulated game with 9- to 10-year-old athletes, (1) participants will experience biomechanical signs of fatigue, and (2) shoulder and elbow kinetics will correlate with body mass index (BMI).

Study Design:

Descriptive laboratory study.

Methods:

Thirteen 9- to 10-year-old youth baseball players pitched a simulated game (75 pitches). Range of motion and …