Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering

California Polytechnic State University, San Luis Obispo

Series

Principal component analysis

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Balance Assessment Using A Smartwatch Inertial Measurement Unit With Principal Component Analysis For Anatomical Calibration, Benjamin M. Presley, Jeffrey C. Sklar, Scott J. Hazelwood, Britta Berg-Johansen, Stephen M. Klisch May 2023

Balance Assessment Using A Smartwatch Inertial Measurement Unit With Principal Component Analysis For Anatomical Calibration, Benjamin M. Presley, Jeffrey C. Sklar, Scott J. Hazelwood, Britta Berg-Johansen, Stephen M. Klisch

Biomedical Engineering

Balance assessment, or posturography, tracks and prevents health complications for a variety of groups with balance impairment, including the elderly population and patients with traumatic brain injury. Wearables can revolutionize state-of-the-art posturography methods, which have recently shifted focus to clinical validation of strictly positioned inertial measurement units (IMUs) as replacements for force-plate systems. Yet, modern anatomical calibration (i.e., sensor-to-segment alignment) methods have not been utilized in inertial-based posturography studies. Functional calibration methods can replace the need for strict placement of inertial measurement units, which may be tedious or confusing for certain users. In this study, balance-related metrics from a smartwatch …


Knee Angles After Crosstalk Correction With Principal Component Analysis In Gait And Cycling, Jordan Skaro, Scott J. Hazelwood, Stephen M. Klisch May 2021

Knee Angles After Crosstalk Correction With Principal Component Analysis In Gait And Cycling, Jordan Skaro, Scott J. Hazelwood, Stephen M. Klisch

Biomedical Engineering

Principal component analysis (PCA) has been used as a post-hoc method for reducing knee crosstalk errors during gait analysis. PCA minimizes correlations between flexion–extension (FE), abduction–adduction (AA), and internal–external rotation (IE) angles. However, previous studies have not considered PCA for exercises involving knee flexion angles that are greater than those typically experienced during gait. Thus, the goal of this study was to investigate using PCA to correct for crosstalk during one exercise (i.e., cycling) that involves relatively high flexion angles. Fifteen participants were tested in gait and cycling using a motion analysis system. Uncorrected FE, AA and IE angles were …