Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Ti-6al-4v Β Phase Selective Dissolution: In Vitro Mechanism And Prediction, Michael A Kurtz Dec 2023

Ti-6al-4v Β Phase Selective Dissolution: In Vitro Mechanism And Prediction, Michael A Kurtz

All Dissertations

Retrieval studies document Ti-6Al-4V β phase dissolution within total hip replacement systems. A gap persists in our mechanistic understanding and existing standards fail to reproduce this damage. This thesis aims to (1) elucidate the Ti-6Al-4V selective dissolution mechanism as functions of solution chemistry, electrode potential and temperature; (2) investigate the effects of adverse electrochemical conditions on additively manufactured (AM) titanium alloys and (3) apply machine learning to predict the Ti-6Al-4V dissolution state. We hypothesized that (1) cathodic activation and inflammatory species (H2O2) would degrade the Ti-6Al-4V oxide, promoting dissolution; (2) AM Ti-6Al-4V selective dissolution would occur …


Predicting Corrosion Damage In The Human Body Using Artificial Intelligence: In Vitro Progress And Future Applications Applications, Michael A. Kurtz, Ruoyu Yang, Mohan S. R. Elapolu, Audrey C. Wessinger, William Nelson, Kazzandra Alaniz, Rahul Rai, Jeremy L. Gilbert Jul 2023

Predicting Corrosion Damage In The Human Body Using Artificial Intelligence: In Vitro Progress And Future Applications Applications, Michael A. Kurtz, Ruoyu Yang, Mohan S. R. Elapolu, Audrey C. Wessinger, William Nelson, Kazzandra Alaniz, Rahul Rai, Jeremy L. Gilbert

Publications

Artificial intelligence (AI) is used in the clinic to improve patient care. While the successes illustrate the impact AI can have, few studies have led to improved clinical outcomes. A gap in translational studies, beginning at the basic science level, exists. In this review, we focus on how AI models implemented in non-orthopedic fields of corrosion science may apply to the study of orthopedic alloys. We first define and introduce fundamental AI concepts and models, as well as physiologically relevant corrosion damage modes. We then systematically review the corrosion/AI literature. Finally, we identify several AI models that may be Preprint …


Beirut Arab University - Faculty Of Engineering - Newsletter Issue 0, Faculty Of Engineering, Beirut Arab University Apr 2023

Beirut Arab University - Faculty Of Engineering - Newsletter Issue 0, Faculty Of Engineering, Beirut Arab University

Engineering Newsletters

No abstract provided.


Using Statistics, Computational Modelling And Artificial Intelligence Methods To Study And Strengthen The Link Between Kinematic Impacts And Mtbis, Andrew Luke Mcconnell Patterson Mar 2023

Using Statistics, Computational Modelling And Artificial Intelligence Methods To Study And Strengthen The Link Between Kinematic Impacts And Mtbis, Andrew Luke Mcconnell Patterson

Electronic Thesis and Dissertation Repository

Mild traumatic brain injuries (mTBIs) are frequently occurring, yet poorly understood, injuries in sports (e.g., ice hockey) and other physical recreation activities where head impacts occur. Helmets are essential pieces of equipment used to protect participants’ heads from mTBIs. Evaluating the performance of helmets to prevent mTBIs using simulations on anatomically accurate computational head finite element models is critically important for advancing the development of safer helmets. Advancing the level of detail in, and access to, such models, and their continued validation through state-of-the-art brain imaging methods and traditional head injury assessment procedures, is also essential to improve safety. The …


Computational Modeling Of Temporal Eeg Responses To Cyclic Binary Visual Stimulus Patterns, Connor M. Delaney Jan 2023

Computational Modeling Of Temporal Eeg Responses To Cyclic Binary Visual Stimulus Patterns, Connor M. Delaney

Theses and Dissertations

The human visual system serves as the basis for many modern computer vision and machine learning approaches. While detailed biophysical models of certain aspects of the visual system exist, little work has been done to develop an end-to-end model from the visual stimulus to the signals generated at the visual cortex measured via the scalp electroencephalogram (EEG). The creation of such a model would not only provide a better understanding of the visual processing pathways but would also facilitate the design and evaluation of more robust visual stimuli for brain-computer interfaces (BCIs). A novel experiment was designed and conducted where …