Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Novel Approaches For Enhancing Cell Survival And Function In Vivo, Ou Wang Dec 2021

Novel Approaches For Enhancing Cell Survival And Function In Vivo, Ou Wang

Department of Chemical and Biomolecular Engineering: Theses and Student Research

FDA has approved several cell-based therapeutics and hundreds of cell therapy clinical trials are ongoing. Cells will be a significant type of medicine after small molecule and protein drugs. However, several obstacles need to be addressed to achieve the widespread use of cellular therapeutics. The first challenge is the low efficacy of cell transplantation due to low retention, survival, integration, and function of cells in vivo. The second challenge is producing a massive number of cells for clinical treatment with cost-effectively and reproducibly technologies.

In this thesis, we proposed and investigated two approaches to address these challenges. To begin …


Inducing Increased Bioplastic Production In R. Palustris Cga009, Cameron Gilley, Dylan Hoppner, Brandi J. Brown Apr 2020

Inducing Increased Bioplastic Production In R. Palustris Cga009, Cameron Gilley, Dylan Hoppner, Brandi J. Brown

Department of Chemical and Biomolecular Engineering: Theses and Student Research

PHA’s (polyhydroxyalkanoates) are important bio polymers in different industries such as petroleum, medicine, and nano technology. In the microorganisms in which they are produced, they serve as an energy storage material by storing both carbon and usable electrons. This is useful in environments where the organisms are nutrient starved. PHA’s have a practical use especially in the medical field as bio-plastics because they are biodegradable and bio-compatible. Rhodopseudomonas. palustris, a common soil bacterium, is notable for its uncommon metabolic flexibility. Its diverse metabolism means that it can fix CO 2 and grow on many lignin based monomers in both aerobic …


Bioproduction Of Adipic Acid Using Engineered Pseudomonas Putida Kt2440 From Lignin-Derived Aromatics, Howard Willett Jul 2019

Bioproduction Of Adipic Acid Using Engineered Pseudomonas Putida Kt2440 From Lignin-Derived Aromatics, Howard Willett

Department of Chemical and Biomolecular Engineering: Theses and Student Research

Current industrial synthesis of adipic acid is nonrenewable and depends on a carcinogenic starting material, benzene. Biocatalysis with an engineered microorganism could turn a renewable feedstock into a value-added chemical such as adipic acid. Here we engineered P. putida KT2440 to transform lignin-derived aromatics, coumarate and ferulate, into adipic acid. Lignin is a recalcitrant plant biopolymer burned for thermal energy. Conversion of lignin into a value-added chemical will improve the efficiency of lignocellulose processing plants. The best performing engineered KT2440 strain produces 2.52 mM adipate at a 9.5% (mole/mole) yield. This was achieved by the genetic insertion of non-natural biosynthetic …


Fibrinogen, Factor Xiii And Fibronectin: A Biophysical And Kinetic Characterization Of Their Interactions, Frank Fabian Jun 2019

Fibrinogen, Factor Xiii And Fibronectin: A Biophysical And Kinetic Characterization Of Their Interactions, Frank Fabian

Department of Chemical and Biomolecular Engineering: Theses and Student Research

The development of recombinant-based liquid fibrin tissue sealants having enhanced hemostatic and wound healing properties will involve understanding as yet not well characterized interactions between fibrinogen, fibrin (Fbn) factor XIII, thrombin and fibronectin. We study these phenomena in the context of comparing plasma derived fibrinogen to recombinant fibrinogen (rFI) produced in the milk of transgenic cows. An abundance of purified γγ and γγ’ FI subspecies enables detailed study of γγ or γγ’ biomonomer and their respective Fbn biopolymer formation as having different substrate behaviors of activated plasma derived factor XIII (pFXIIIa2b2). High pressure size exclusion (HPSEC) …


Repair And Regeneration Of Chondral Defects: An In Vitro Study Demonstrating Feasibility And Mechanism Under Low Intensity Ultrasound, Neety Sahu, Anuradha Subramanian Apr 2017

Repair And Regeneration Of Chondral Defects: An In Vitro Study Demonstrating Feasibility And Mechanism Under Low Intensity Ultrasound, Neety Sahu, Anuradha Subramanian

Department of Chemical and Biomolecular Engineering: Theses and Student Research

Holistic repair of damaged cartilage remains an unsolved biomedical problem. Current methods that employ microfracture (MF) or autologous chondrocyte implantation (ACT) or tissue engineered strategies yield inferior repaired cartilage (Fig. 1). Lack of chondroinductive factors at the site of injury, in vivo, has been identified as a factor that limits repair. Clinically amenable strategies that can improve repair are desired. A novel clinically translatable repair strategy based on low-intensity-ultrasound (US) is proposed (Fig.2). Differently from all approaches that use US, our approach employs US at the cell resonant frequency where bioeffects are maximized. We have shown that US impacts the …


Interaction Of Fibrinogen With Fibronectin: Purification And Characterization Of A Room Temperature-Stable Fibrinogen-Fibronectin Complex From Normal Human Plasma, Ayman E. Ismail May 2016

Interaction Of Fibrinogen With Fibronectin: Purification And Characterization Of A Room Temperature-Stable Fibrinogen-Fibronectin Complex From Normal Human Plasma, Ayman E. Ismail

Department of Chemical and Biomolecular Engineering: Theses and Student Research

A fibrinogen-fibronectin complex (γγ’pdFI-pdFN) was purified from normal human plasma using a sequence of cryoprecipitation, ammonium sulfate fractionation, and DEAE Sepharose chromatography. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) under reducing condition showed both a 1:1 stoichiometric ratio of fibrinogen (FI) to fibronectin (FN) as well as a stoichiometric ratio of 1:1 of γg to gγ’. The γγ’pdFI-pdFN complex was non-covalent in nature as it was disrupted by affinity adsorption to Gelatin Sepharose where pdFN bound strongly and the disrupted γγ’pdFI fell through the chromatographic column. Surprisingly, the purified γγ’pdFI-pdFN complex was more broadly thermally stable than plasma FI (pdFI) …


Mitochondrial Dysfunction And Loss Of Glutamate Uptake In Primary Astrocytes Exposed To Titanium Dioxide Nanoparticles, Christina L. Wilson May 2015

Mitochondrial Dysfunction And Loss Of Glutamate Uptake In Primary Astrocytes Exposed To Titanium Dioxide Nanoparticles, Christina L. Wilson

Department of Chemical and Biomolecular Engineering: Theses and Student Research

The proper function of astrocytes is critical for brain health as they are the most abundant cells in the brain which monitor ion homeostasis, recycle neurotransmitters and respond to tissue damage therefore disruption in astrocyte function can result in overall detrimental effects and has been linked with neurodegenerative diseases. Titanium Dioxide (TiO2) nanoparticles are currently the second most produced engineered nanomaterial in the world with vast usage in consumer products leading to recurrent human exposure. Animal studies indicate significant nanoparticle accumulation in the brain while cellular toxicity studies demonstrate negative effects on neuronal cell viability and function. However, …


Low Molecular Weight Glucosamine/L-Lactide Copolymers As Potential Carriers For The Development Of A Sustained Rifampicin Release System: Mycobacterium Smegmatis As A Tuberculosis Model, Jorge Ragusa Dec 2014

Low Molecular Weight Glucosamine/L-Lactide Copolymers As Potential Carriers For The Development Of A Sustained Rifampicin Release System: Mycobacterium Smegmatis As A Tuberculosis Model, Jorge Ragusa

Department of Chemical and Biomolecular Engineering: Theses and Student Research

Tuberculosis, a highly contagious disease, ranks as the second leading cause of death from an infectious disease, and remains a major global health problem. In 2013, 9 million new cases were diagnosed and 1.5 million people died worldwide from tuberculosis. This dissertation aims at developing a new, ultrafine particle-based efficient antibiotic delivery system for the treatment of tuberculosis. The carrier material to make the rifampicin (RIF)-loaded particles is a low molecular weight star-shaped polymer produced from glucosamine (molecular core building unit) and L-lactide (GluN-LLA). Stable particles with a very high 50% drug loading capacity were made via electrohydrodynamic atomization. Prolonged …


Application Of Response Surface Methodology And Central Composite Design For 5p12-Rantes Expression In The Pichia Pastoris System, Frank M. Fabian Dec 2012

Application Of Response Surface Methodology And Central Composite Design For 5p12-Rantes Expression In The Pichia Pastoris System, Frank M. Fabian

Department of Chemical and Biomolecular Engineering: Theses and Student Research

Pichia pastoris has demonstrated the ability to express high levels of recombinant heterologous proteins. Protein expression is enhanced during fermentation at high cell density. However, the level of expression is mainly regulated by fermentation operation factors. This research is directed to investigate the effect of methanol growth rate, temperature and pH in the expression of the total 5P12-Rantes concentration, expression of active 5P12-Rantes and Specific yield using the response surface methodology and central composite design.

The response surface methodology, RSM, has been used successfully used by Zhang, W. and Ian, M. to optimize the cell density and fermentation process. The …


Synthesis Of An Endothelial Cell Mimicking Surface Containing Thrombomodulin And Endothelial Protein C Receptor, Karl E. Kador Apr 2010

Synthesis Of An Endothelial Cell Mimicking Surface Containing Thrombomodulin And Endothelial Protein C Receptor, Karl E. Kador

Department of Chemical and Biomolecular Engineering: Theses and Student Research

Synthetic materials for use in blood contacting applications have been studied for many years with limited success. One of the main areas of need for these materials is the design of synthetic vascular grafts for use in the hundreds of thousands of patients who have coronary artery bypass grafting, many without suitable veins for autologous grafts. The design of these grafts is constrained by two common modes of failure, the formation of intimal hyperplasia (IH) and thrombosis. IH formation has been previously linked to a mismatching of the mechanical properties of the graft and has been overcome by creating grafts …