Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Adjuvant Pluronic F68 Is Compatible With A Plant Root-Colonizing Probiotic, Pseudomonas Chlororaphis O6, Amanda R. Streeter, Anthony Cartwright, Mohammad Zargaran, Anagha Wankhade, Anne J. Anderson, David W. Britt Dec 2023

Adjuvant Pluronic F68 Is Compatible With A Plant Root-Colonizing Probiotic, Pseudomonas Chlororaphis O6, Amanda R. Streeter, Anthony Cartwright, Mohammad Zargaran, Anagha Wankhade, Anne J. Anderson, David W. Britt

Biological Engineering Faculty Publications

Plant probiotic bacteria are being increasingly used to maximize both the productivity and quality of field crops. Pseudomonas chlororaphis O6 (PcO6) is a plant root colonizer with probiotic activities. This bacterium produces an array of metabolites, including a group of phenazines that are functional in plant protection. The paper reports responses of PcO6 to a nonionic triblock copolymer surfactant, Pluronic F68. This Pluronic exhibits membrane "healing" activity and improves cryopreservation recovery in eukaryotic cells. The product is FDA-approved and is applied as an adjuvant in formulations used in agriculture, medicine, and biotechnology. Growth of PcO6 on …


Microbial Glycosylation Of Antitubercular Agent Chlorflavonin, Jie Ren, Jixun Zhan Nov 2023

Microbial Glycosylation Of Antitubercular Agent Chlorflavonin, Jie Ren, Jixun Zhan

Biological Engineering Faculty Publications

Flavonoids have shown health-benefiting properties, such as antioxidative and anti-inflammatory activities, and are commonly used as nutraceuticals and pharmaceuticals. Although flavonoids are predominantly identified from plants, several filamentous fungal species have also been reported to produce bioactive flavonoids, including chlorflavonin from Aspergillus candidus, a novel halogenated flavonoid with potent antifungal and antitubercular (anti-TB) activities. Unfortunately, the low water-solubility of this molecule may hinder its bioavailability. Glycosylation is an effective method to enhance the polarity of natural products and alter their physicochemical properties. This work focuses on the development of novel water-soluble chlorflavonin derivatives to combat the threat of drug-resistant …


Environmentally Friendly New Catalyst Using Waste Alkaline Solution From Aluminum Production For The Synthesis Of Biodiesel In Aqueous Medium, Sandro L. Barbosa, David Lee Nelson, Lucas Paconio, Moises Pedro, Wallans Torres Pio Dos Santos, Alexandre P. Wentx, Fernando L. P. Pessoa, Foster A. Agblevor, Daniel A. Bortoleto, Maria B. De Freitas-Marques, Lucas D. Zanatta Jun 2023

Environmentally Friendly New Catalyst Using Waste Alkaline Solution From Aluminum Production For The Synthesis Of Biodiesel In Aqueous Medium, Sandro L. Barbosa, David Lee Nelson, Lucas Paconio, Moises Pedro, Wallans Torres Pio Dos Santos, Alexandre P. Wentx, Fernando L. P. Pessoa, Foster A. Agblevor, Daniel A. Bortoleto, Maria B. De Freitas-Marques, Lucas D. Zanatta

Biological Engineering Faculty Publications

Red mud (RM) is composed of a waste alkaline solution (pH = 13.3) obtained from the production of alumina. It contains high concentrations of hematite (Fe2O3), goethite (FeOOH), gibbsite [Al(OH)3], a boehmite (AlOOH), anatase (Tetragonal–TiO2), rutile (Ditetragonal dipyramidal–TiO2), hydrogarnets [Ca3Al2(SiO4)3-x(OH)4x], quartz (SiO2), and perovskite (CaTiO3). It was shown to be an excellent catalytic mixture for biodiesel production. To demonstrate the value of RM, an environmentally friendly process of transesterification in aqueous medium using waste cooking oil …


Engineered Production Of Bioactive Polyphenolic O-Glycosides, Jie Ren, Caleb Don Barton, Jixun Zhan Apr 2023

Engineered Production Of Bioactive Polyphenolic O-Glycosides, Jie Ren, Caleb Don Barton, Jixun Zhan

Biological Engineering Faculty Publications

Polyphenolic compounds (such as quercetin and resveratrol) possess potential medicinal values due to their various bioactivities, but poor water solubility hinders their health benefits to humankind. Glycosylation is a well-known post-modification method to biosynthesize natural product glycosides with improved hydrophilicity. Glycosylation has profound effects on decreasing toxicity, increasing bioavailability and stability, together with changing bioactivity of polyphenolic compounds. Therefore, polyphenolic glycosides can be used as food additives, therapeutics, and nutraceuticals. Engineered biosynthesis provides an environmentally friendly and cost-effective approach to generate polyphenolic glycosides through the use of various glycosyltransferases (GTs) and sugar biosynthetic enzymes. GTs transfer the sugar moieties from …