Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 31

Full-Text Articles in Engineering

Transparent And Conductive Gallium Oxide Electrode For Simultaneous Recording And Optogenetic Stimulation, Christopher Patrick Carey Jan 2024

Transparent And Conductive Gallium Oxide Electrode For Simultaneous Recording And Optogenetic Stimulation, Christopher Patrick Carey

Graduate Theses, Dissertations, and Problem Reports

Neural electrode technology has been around for centuries since the times of Galvani. In early electrophysiology experiments metal wires were used to induce contractions in dissected animals. The metal wire electrode has since been a standard tool to both stimulate and record neural activity. In the past two decades, a new strategy for neural stimulation has been formulated based on the emergent field of optogenetics. Optogenetics refers to the use of light-sensitive proteins genetically imbedded in the membrane of a neuron to elicit neural activity. This technique offers more selectivity in the stimulation of neurons. Typical optogenetic neural electrodes, or …


Implementing Unmanned Aerial Vehicles To Collect Human Gait Data At Distance And Altitude For Identification And Re-Identification, Donn E. Bartram Jan 2024

Implementing Unmanned Aerial Vehicles To Collect Human Gait Data At Distance And Altitude For Identification And Re-Identification, Donn E. Bartram

Graduate Theses, Dissertations, and Problem Reports

Gait patterns are a class of biometric information pertaining to the way a person moves and poses. Gait information is unique to each person and can be used to identify and reidentify people. Historically, this task has been achieved through the use of multiple ground-based imaging sensors. However, as Unmanned Aerial Vehicles (UAVs) advance, they present the opportunity to evolve the process of persons identification and re-identification. Collecting human gait data using UAVs at distances ranging from 20m to 500m and altitudes ranging from 0m to 120m is a challenging task. The current biometric data collection methods, primarily designed for …


Impacts Of Diverse Inflammatory Stimuli On Neutrophil Behavior: Extracellular Vesicles, E-Cigarettes, And Nanoparticles, Hunter T. Snoderly Jan 2023

Impacts Of Diverse Inflammatory Stimuli On Neutrophil Behavior: Extracellular Vesicles, E-Cigarettes, And Nanoparticles, Hunter T. Snoderly

Graduate Theses, Dissertations, and Problem Reports

Neutrophils are the body’s front-line defenders against foreign insult and are key players in a variety of inflammatory conditions. This body of work examines the role of neutrophils in promoting pathology in three distinct inflammatory contexts. In the pro-inflammatory state provoked by breast cancer, neutrophils decondense their nuclei and release cytotoxic web-like structures known as neutrophil extracellular traps (NETs). NETs form most commonly via histone modifications facilitated by the enzyme PAD4. NETs are known to be a harbinger of disease progression and promote metastasis through capture of circulating tumor cells. It was hypothesized that breast tumors release small particles known …


Material Characterization Of Thermoplastic Polyurethane (Tpu) And Thermoplastic Elastomers (Tpe) For Development Of 3d-Printed Surrogate Organs For Medical Training, Anastasia Elizabeth Lucci Jan 2023

Material Characterization Of Thermoplastic Polyurethane (Tpu) And Thermoplastic Elastomers (Tpe) For Development Of 3d-Printed Surrogate Organs For Medical Training, Anastasia Elizabeth Lucci

Graduate Theses, Dissertations, and Problem Reports

Cadaveric specimens are a necessary, albeit limited, resource for training medical students on basic surgical skills. The availability of surrogate 3D-printed organs would readily allow access to resources that could reduce or potentially eliminate the need for cadaveric specimens or, at a minimum, provide students the opportunity to practice with 3D-printed surrogates before transitioning to those specimens. This research focuses on determining which thermoplastic material most closely mimics mechanical properties such as hardness and stiffness of human organs and allows 3D printing surrogate organs to be used as safe, educational tools. Relatively “soft” materials such as thermoplastic polyurethanes (TPU) and …


Advancing Medical Technology For Motor Impairment Rehabilitation: Tools, Protocols, And Devices, Matthew Yough Jan 2023

Advancing Medical Technology For Motor Impairment Rehabilitation: Tools, Protocols, And Devices, Matthew Yough

Graduate Theses, Dissertations, and Problem Reports

Excellent motor control skills are necessary to live a high-quality life. Activities such as walking, getting dressed, and feeding yourself may seem mundane, but injuries to the neuromuscular system can render these tasks difficult or even impossible to accomplish without assistance. Statistics indicate that well over 100 million people are affected by diseases or injuries, such as stroke, Parkinson’s Disease, Multiple Sclerosis, Cerebral Palsy, peripheral nerve injury, spinal cord injury, and amputation, that negatively impact their motor abilities. This wide array of injuries presents a challenge to the medical field as optimal treatment paradigms are often difficult to implement due …


Longitudinal Oxygen Imaging In 3d (Bio)Printed Models, Ryan Curtis O'Connell Jan 2023

Longitudinal Oxygen Imaging In 3d (Bio)Printed Models, Ryan Curtis O'Connell

Graduate Theses, Dissertations, and Problem Reports

Electron paramagnetic resonance (EPR), and its molecular imaging modality, is a powerful tool to noninvasively map various biological and chemical markers within objects of interest. Reliable data acquisition is a major impeding factor for longitudinal hands-off measurements. Measurements are especially challenging in biomedical applications, as live objects are not static. Frequent changes occur that require constant fine recalibration of the EPR detection system, called the resonator. To enable longitudinal imaging, a technology permitting automatic digital control of resonator coupling, tuning, and EPR data acquisition was developed. Automation was achieved through the utilization of a microcontroller and digital peripheral components such …


Characterizing Locomotor Disturbance Perception In Young Adults, Daniel James Liss Jan 2022

Characterizing Locomotor Disturbance Perception In Young Adults, Daniel James Liss

Graduate Theses, Dissertations, and Problem Reports

Falls during walking are a leading cause of injuries across aging. Many of these falls are due to slips and trips. The ability to perceive disturbances to ongoing motion may play an important role in the control of walking balance. However, disturbance perception has been investigated in standing balance, but its role in walking balance due to slip- and trip-like disturbances remains largely unknown. Characterizing locomotor disturbance perception in young adults may lead to a more comprehensive understanding of sensorimotor walking balance control.

This work defined locomotor disturbance perception in response to slip and trip-like disturbances in young adults. We …


Combinatorial Approaches For Effective Design, Synthesis, And Optimization Of Enzyme-Based Conjugates, Jordan Scott Chapman Jan 2022

Combinatorial Approaches For Effective Design, Synthesis, And Optimization Of Enzyme-Based Conjugates, Jordan Scott Chapman

Graduate Theses, Dissertations, and Problem Reports

The specificity and efficiency with which enzymes catalyze selective chemical reactions far exceeds the performance of traditional heterogeneous catalysts that are predominant in industrial applications such as conversion of commodity chemicals to value-added products, fuel cells, and petroleum refinement. Moreover, biocatalysts exhibit exceptionally high product turnover at ambient conditions with little health and environmental burden. These advantageous qualities have led to the prolific use of enzyme catalysis in pharmaceutical, detergents, and food preservation industries wherein their use has greatly reduced waste generation, Unfortunately, the full slate of benefits that enzymes can impart to a broader range of chemical processes is …


Multi-Task Neuromuscular Generalization And Changes Through The Lifespan, Hannah Delaney Carey Jan 2022

Multi-Task Neuromuscular Generalization And Changes Through The Lifespan, Hannah Delaney Carey

Graduate Theses, Dissertations, and Problem Reports

Mobility in everyday life requires executing and shifting between a broad assortment of functional tasks and resisting disturbances that could cause falls. Though the importance of successfully performing a variety of functional tasks is recognized and incorporated in clinical assessments (e.g., the Timed-Up-and-Go Test, Berg Balance Scale), little is understood about the underlying neuromuscular control required, or how it changes with age. The neuromuscular control for functional tasks such as walking is typically studied in isolation, or with variations on the same task. Characterizing the coordination required to produce and shift between a wider variety of tasks and resist external …


Gan-Based Super-Resolution And Segmentation Of Retinal Layers In Optical Coherence Tomography Scans, Paria Jeihouni Jan 2022

Gan-Based Super-Resolution And Segmentation Of Retinal Layers In Optical Coherence Tomography Scans, Paria Jeihouni

Graduate Theses, Dissertations, and Problem Reports

Optical Coherence Tomography (OCT) has been identified as a noninvasive and cost-effective imaging modality for identifying potential biomarkers for Alzheimer's diagnosis and progress detection. Current hypotheses indicate that retinal layer thickness, which can be assessed via OCT scans, is an efficient biomarker for identifying Alzheimer's disease. Due to factors such as speckle noise, a small target region, and unfavorable imaging conditions manual segmentation of retina layers is a challenging task. Therefore, as a reasonable first step, this study focuses on automatically segmenting retinal layers to separate them for subsequent investigations. Another important challenge commonly faced is the lack of clarity …


Biomechanically Inspired Assistive Technology To Restore Movement Of The Upper Limbs After Stroke, Ariel Thomas Jan 2021

Biomechanically Inspired Assistive Technology To Restore Movement Of The Upper Limbs After Stroke, Ariel Thomas

Graduate Theses, Dissertations, and Problem Reports

A stroke often damages the neural structures responsible for movement. Stroke is a heterogeneous disease, affecting each survivor differently. There are common motor features of a stroke, but even these features vary across time as an individual proceeds through different stages of recovery. The different ways in which stroke motor impairment can present itself are often overlooked, but these differences are fundamental to the understanding of the disease and its recovery. When motor assessments are capable of acquiring information necessary to parse out a detailed profile of each stroke case, this will lead to an improved neuromechanical understanding of the …


A Deep Learning Approach To Lncrna Subcellular Localization Using Inexact Q-Mer, Weijun Yi Jan 2021

A Deep Learning Approach To Lncrna Subcellular Localization Using Inexact Q-Mer, Weijun Yi

Graduate Theses, Dissertations, and Problem Reports

Long non coding Ribonucleic Acids (lncRNAs) can be localized to different cellular components, such as the nucleus, exosome, cytoplasm, ribosome, etc. Their biological functions can be influenced by the region of the cell they are located. Many of these lncRNAs are associated with different challenging diseases. Thus, it is crucial to study their subcellular localization. However, compared to the vast number of lncRNAs, only relatively few have annotations in terms of their subcellular localization. Conventional computational methods use q-mer profiles from lncRNA sequences and then train machine learning models, such as support vector machines and logistic regression with the profiles. …


Tuning The Size And Composition Of Manganese Oxide Nanoparticles Through Varying Temperature Ramp And Aging Time, Celia Martinez De La Torre, Jasmine H. Grossman, Andrey A. Bobko, Margaret F. Bennewitz Jan 2020

Tuning The Size And Composition Of Manganese Oxide Nanoparticles Through Varying Temperature Ramp And Aging Time, Celia Martinez De La Torre, Jasmine H. Grossman, Andrey A. Bobko, Margaret F. Bennewitz

Faculty & Staff Scholarship

Manganese oxide (MnO) nanoparticles (NPs) can serve as robust pH-sensitive contrast agents for magnetic resonance imaging (MRI) due to Mn2+ release at low pH, which generates a ~30 fold change in T1 relaxivity. Strategies to control NP size, composition, and Mn2+ dissolution rates are essential to improve diagnostic performance of pH-responsive MnO NPs. We are the first to demonstrate that MnO NP size and composition can be tuned by the temperature ramping rate and aging time used during thermal decomposition of manganese(II) acetylacetonate. Two different temperature ramping rates (10°C/min and 20°C/min) were applied to reach 300°C and NPs were aged …


Integrated Techno-Economic And Life Cycle Analyses Of Biomass Utilization For Value-Added Bioproducts In The Northeastern United States, Yuxi Wang Jan 2020

Integrated Techno-Economic And Life Cycle Analyses Of Biomass Utilization For Value-Added Bioproducts In The Northeastern United States, Yuxi Wang

Graduate Theses, Dissertations, and Problem Reports

A multi-stage spatial analysis was first conducted to select locations for lignocellulosic biomass-based bioproduct facility, using Geographical Information System (GIS) spatial analysis, multi-criteria analysis ranking algorithm, and social-economic assessment. A case study was developed to determine locations for lignocellulosic biorefineries using feedstocks including forest residue biomass and three energy crops for 13 states in the northeastern United States. In the entire study area, 11.1% of the counties are high-suitable, 48.8% are medium-suitable for biorefinery siting locations. A non-parametric analysis of cross-group surveys showed that preferences on biorefinery siting are homogeneous for experts in academia and industry groups, but people in …


An Elastic-Net Logistic Regression Approach To Generate Classifiers And Gene Signatures For Types Of Immune Cells And T Helper Cell Subsets, Arezo Torang, Paraag Gupta, David J. Klinke Ii Jan 2019

An Elastic-Net Logistic Regression Approach To Generate Classifiers And Gene Signatures For Types Of Immune Cells And T Helper Cell Subsets, Arezo Torang, Paraag Gupta, David J. Klinke Ii

Faculty & Staff Scholarship

Background: Host immune response is coordinated by a variety of different specialized cell types that vary in time and location. While host immune response can be studied using conventional low-dimensional approaches, advances in transcriptomics analysis may provide a less biased view. Yet, leveraging transcriptomics data to identify immune cell subtypes presents challenges for extracting informative gene signatures hidden within a high dimensional transcriptomics space characterized by low sample numbers with noisy and missing values. To address these challenges, we explore using machine learning methods to select gene subsets and estimate gene coefficients simultaneously. Results: Elastic-net logistic regression, a type of …


Cancer Nanotechnology: Enhancing Tumor Cell Response To Chemotherapy For Hepatocellular Carcinoma Therapy, Sun Yongbing, Ma Wen, Yang Yuanyuan, He Mengxue, Li Aimin, Bai Lei, Yu Bin, Yu Zhiqiang Jan 2019

Cancer Nanotechnology: Enhancing Tumor Cell Response To Chemotherapy For Hepatocellular Carcinoma Therapy, Sun Yongbing, Ma Wen, Yang Yuanyuan, He Mengxue, Li Aimin, Bai Lei, Yu Bin, Yu Zhiqiang

Faculty & Staff Scholarship

Abstract

Hepatocellular carcinoma (HCC) is one of the deadliest cancers due to its complexities, reoccurrence after surgical resection, metastasis and heterogeneity. In addition to sorafenib and lenvatinib for the treatment of HCC approved by FDA, various strategies including transarterial chemoembolization, radiotherapy, locoregional therapy and chemotherapy have been investigated in clinics. Recently, cancer nanotechnology has got great attention for the treatment of various cancers including HCC. Both passive and active targetings are progressing at a steady rate. Herein, we describe the lessons learned from pathogenesis of HCC and the understanding of targeted and non-targeted nanoparticles used for the delivery of small …


A Biomimetic Approach To Controlling Restorative Robotics, Matthew T. Boots Jan 2019

A Biomimetic Approach To Controlling Restorative Robotics, Matthew T. Boots

Graduate Theses, Dissertations, and Problem Reports

Movement is the only way a person can interact with the world around them. When trauma to the neuromuscular systems disrupts the control of movement, quality of life suffers. To restore limb functionality, active robotic interventions and/or rehabilitation are required. Unfortunately, the primary obstacle in a person’s recovery is the limited robustness of the human-machine interfaces. Current systems rely on control approaches that rely on the person to learn how the system works instead of the system being more intuitive and working with the person naturally. My research goal is to design intuitive control mechanisms based on biological processes termed …


Aptamer Functionalized Zinc Oxide Field Effect Transistors For Odor Detection, Michael D. Aldridge Jan 2019

Aptamer Functionalized Zinc Oxide Field Effect Transistors For Odor Detection, Michael D. Aldridge

Graduate Theses, Dissertations, and Problem Reports

Odor detection and identification are complex processes, and tasks that currently only animals do well. There is a pressing need for an electronic nose, or eNose, with good sensitivity, selectivity, and speed that mimics that ability. Food quality control operations, environmental sensing, occupational safety, and the defense sectors all require systems that can rapidly and reliably detect trace levels of volatile organic compounds. The goal of this work is to create a biologically inspired device which can accurately detect and identify odors at concentrations consistent with the most sensitive biological systems.

In order to mimic a natural olfactory system, we …


Textured Contact Lens Based Iris Presentation Attack In Uncontrolled Environment, Daksha Yadav Jan 2019

Textured Contact Lens Based Iris Presentation Attack In Uncontrolled Environment, Daksha Yadav

Graduate Theses, Dissertations, and Problem Reports

The widespread use of smartphones has spurred the research in mobile iris devices. Due to their convenience, these mobile devices are also utilized in unconstrained outdoor conditions. At the same time, iris recognition in the visible spectrum has developed into an active area of research. These scenarios have necessitated the development of reliable iris recognition algorithms for such an uncontrolled environment. Additionally, iris presentation attacks such as textured contact lens pose a major challenge to current iris recognition systems.

Motivated by these factors, in this thesis, a detailed analysis of the effect of textured contact lenses on iris recognition in …


Gait Rehabilitation Using Functional Electrical Stimulation Induces Changes In Ankle Muscle Coordination In Stroke Survivors: A Preliminary Study, Jessica L. Allen, Lena H. Ting, Trisha M. Kesar Dec 2018

Gait Rehabilitation Using Functional Electrical Stimulation Induces Changes In Ankle Muscle Coordination In Stroke Survivors: A Preliminary Study, Jessica L. Allen, Lena H. Ting, Trisha M. Kesar

Faculty & Staff Scholarship

No abstract provided.


Analytical Cpg Model Driven By Limb Velocity Input Generates Accurate Temporal Locomotor Dynamics, Sergiy Yakovenko, Anton Sobinov, Valeriya Gritsenko Jan 2018

Analytical Cpg Model Driven By Limb Velocity Input Generates Accurate Temporal Locomotor Dynamics, Sergiy Yakovenko, Anton Sobinov, Valeriya Gritsenko

Faculty & Staff Scholarship

The ability of vertebrates to generate rhythm within their spinal neural networks is essential for walking, running, and other rhythmic behaviors. The central pattern generator (CPG) network responsible for these behaviors is well-characterized with experimental and theoretical studies, and it can be formulated as a nonlinear dynam- ical system. The underlying mechanism responsible for locomotor behavior can be expressed as the process of leaky integration with resetting states generating appropriate phases for changing body velocity. The low-dimensional input to the CPG model generates the bilateral pattern of swing and stance modulation for each limb and is consistent with the desired …


Development Of A Dynamic Model And Control System For Load-Following Studies Of Supercritical Pulverized Coal Power Plants, Parikshit Sarda, Elijah Hedrick, Katherine Reynolds, Debangsu Bhattacharyya, National Energy Technology Laboratory Jan 2018

Development Of A Dynamic Model And Control System For Load-Following Studies Of Supercritical Pulverized Coal Power Plants, Parikshit Sarda, Elijah Hedrick, Katherine Reynolds, Debangsu Bhattacharyya, National Energy Technology Laboratory

Faculty & Staff Scholarship

Traditional energy production plants are increasingly forced to cycle their load and operate under low-load conditions in response to growth in intermittent renewable generation. A plant-wide dynamic model of a supercritical pulverized coal (SCPC) power plant has been developed in the Aspen Plus Dynamics® (APD) software environment and the impact of advanced control strategies on the transient responses of the key variables to load-following operation and disturbances can be studied. Models of various key unit operations, such as the steam turbine, are developed in Aspen Custom Modeler® (ACM) and integrated in the APD environment. A coordinated control system (CCS) is …


Effects Of Water Content And Particle Size On Yield And Reactivity Of Lignite Chars Derived From Pyrolysis And Gasification, Yong Huang, Yonggang Wang, Hao Zhou, Yaxuan Gao, Deliang Xu, Lei Bai, Shu Zhang Jan 2018

Effects Of Water Content And Particle Size On Yield And Reactivity Of Lignite Chars Derived From Pyrolysis And Gasification, Yong Huang, Yonggang Wang, Hao Zhou, Yaxuan Gao, Deliang Xu, Lei Bai, Shu Zhang

Faculty & Staff Scholarship

Water inside coal particles could potentially enhance the interior char–steam reactions during pyrolysis and gasification. This study aims to examine the effects of water contents on the char conversion during the pyrolysis and gasification of Shengli lignite. The ex-situ reactivities of chars were further analyzed by a thermo gravimetric analyzer (TGA). Under the pyrolysis condition, the increase in water contents has monotonically decreased the char yields only when the coal particles were small (μm). In contrast, the water in only large coal particles (0.9–2.0 mm) has clearly favored the increase in char conversion during the gasification condition where 50% steam …


Quantum Confined Peptide Assemblies With Tunable Visible To Near-Infrared Spectral Range, Kai Tao, Zhen Fan, Leming Sun, Pandeeswar Makam, Zhen Tian, Mark Ruegsegger, Shira Shaham-Niv, Derek Hansford, Ruth Aizen, Zui Pan, Scott Galster, Jianjie Ma, Fan Yuan, Mingsu Si, Songnan Qu, Mingjun Zhang, Ehud Gazit, Junbai Li Jan 2018

Quantum Confined Peptide Assemblies With Tunable Visible To Near-Infrared Spectral Range, Kai Tao, Zhen Fan, Leming Sun, Pandeeswar Makam, Zhen Tian, Mark Ruegsegger, Shira Shaham-Niv, Derek Hansford, Ruth Aizen, Zui Pan, Scott Galster, Jianjie Ma, Fan Yuan, Mingsu Si, Songnan Qu, Mingjun Zhang, Ehud Gazit, Junbai Li

Faculty & Staff Scholarship

Quantum confined materials have been extensively studied for photoluminescent applica- tions. Due to intrinsic limitations of low biocompatibility and challenging modulation, the utilization of conventional inorganic quantum confined photoluminescent materials in bio- imaging and bio-machine interface faces critical restrictions. Here, we present aromatic cyclo-dipeptides that dimerize into quantum dots, which serve as building blocks to further self-assemble into quantum confined supramolecular structures with diverse morphologies and photoluminescence properties. Especially, the emission can be tuned from the visible region to the near-infrared region (420 nm to 820 nm) by modulating the self-assembly process. Moreover, no obvious cytotoxic effect is observed for …


Incineration Of Nanoclay Composites Leads To Byproducts With Reduced Cellular Reactivity, Alixandra Wagner, Andrew P. White, Man Chio Tang, Sushant Agarwal, Todd A. Stueckle, Yon Rojanasakul, Rakesh K. Gupta, Carasela Zoica Dinu Jan 2018

Incineration Of Nanoclay Composites Leads To Byproducts With Reduced Cellular Reactivity, Alixandra Wagner, Andrew P. White, Man Chio Tang, Sushant Agarwal, Todd A. Stueckle, Yon Rojanasakul, Rakesh K. Gupta, Carasela Zoica Dinu

Faculty & Staff Scholarship

Addition of nanoclays into a polymer matrix leads to nanocomposites with enhanced properties to be used in plastics for food packaging applications. Because of the plastics’ high stored energy value, such nanocomposites make good candidates for disposal via municipal solid waste plants. However, upon disposal, increased concerns related to nanocomposites’ byproducts potential toxicity arise, especially considering that such byproducts could escape disposal filters to cause inhalation hazards. Herein, we investigated the effects that byproducts of a polymer polylactic acid-based nanocomposite containing a functionalized montmorillonite nanoclay (Cloisite 30B) could pose to human lung epithelial cells, used as a model for inhalation …


Graphene Nanoplatelets-Sericin Surface-Modified Gum Alloy For Improved Biological Response, Valentina Mitran, Valentina Dinca, Raluca Ion, Vasile D. Cojocaru, Patricia Neacsu, Cerasela Zoica Dinu, Laurentiu Rusen, Simona Brajnicov, Anca Bonciu, Maria Dinescu, Doina Raducanu, Ioan Dan Jan 2018

Graphene Nanoplatelets-Sericin Surface-Modified Gum Alloy For Improved Biological Response, Valentina Mitran, Valentina Dinca, Raluca Ion, Vasile D. Cojocaru, Patricia Neacsu, Cerasela Zoica Dinu, Laurentiu Rusen, Simona Brajnicov, Anca Bonciu, Maria Dinescu, Doina Raducanu, Ioan Dan

Faculty & Staff Scholarship

In this study a “Gum Metal” titanium-based alloy, Ti-31.7Nb-6.21Zr-1.4Fe-0.16O, was synthesized by melting and characterized in order to evaluate its potential for biomedical applications. The results showed that the newly developed alloy presents a very high strength, high plasticity and a low Young's modulus relative to titanium alloys currently used in medicine. For further bone implant applications, the newly synthesized alloy was surface modified with graphene nanoplatelets (GNP), sericin (SS) and graphene nanoplatelets/sericine (GNP–SS) composite films via Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. The characterization of each specimen was monitored by scanning electron microscopy (SEM), atomic force microscopy (AFM), …


Navigating The “No Man's Land” Of Tki-Failed Egfr-Mutated Non– Small Cell Lung Cancer (Nsclc): A Review, Bryan Oronsky, Patrick Ma, Tony R. Reid, Pedro Cabrales, Michelle Lybeck, Arnold Oronsky, Neil Oronsky, Corey A. Carter Jan 2018

Navigating The “No Man's Land” Of Tki-Failed Egfr-Mutated Non– Small Cell Lung Cancer (Nsclc): A Review, Bryan Oronsky, Patrick Ma, Tony R. Reid, Pedro Cabrales, Michelle Lybeck, Arnold Oronsky, Neil Oronsky, Corey A. Carter

Faculty & Staff Scholarship

As the leading cause of cancer-related mortality, lung cancer is a worldwide health issue that is overwhelmingly caused by smoking. However, a substantial minority (~25%) of patients with non–small cell lung cancer (NSCLC) has never smoked. In these patients, activating mutations of the epidermal growth factor receptor (EGFR) are more likely, which render their tumors susceptible for a finite period to treatment with EGFR tyrosine kinase inhibitors (TKIs) and confer a better prognosis than EGFR wild-type NSCLC. On progression, due to the inevitable insurgence of resistance, TKIs are generally followed by second- or third-line salvage chemotherapy until treatment failure, after …


Enhanced Hot Electron Lifetimes In Quantum Wells With Inhibited Phonon Coupling, Hamidreza Esmaielpour, Vincent R. Whiteside, Herath P. Piyathilaka, Sangeetha Vijeyaragunathan, Bin Wang, Echo Adcock-Smith, Kenneth P. Roberts, Tetsuya D. Mishima, Michael B. Santos, Alan D. Bristow, Ian R. Sellers Jan 2018

Enhanced Hot Electron Lifetimes In Quantum Wells With Inhibited Phonon Coupling, Hamidreza Esmaielpour, Vincent R. Whiteside, Herath P. Piyathilaka, Sangeetha Vijeyaragunathan, Bin Wang, Echo Adcock-Smith, Kenneth P. Roberts, Tetsuya D. Mishima, Michael B. Santos, Alan D. Bristow, Ian R. Sellers

Faculty & Staff Scholarship

Hot electrons established by the absorption of high-energy photons typically thermalize on a picosecond time scale in a semiconductor, dissipating energy via various phonon-mediated relaxation pathways. Here it is shown that a strong hot carrier distribution can be produced using a type-II quantum well structure. In such systems it is shown that the dominant hot carrier thermalization process is limited by the radiative recombination lifetime of electrons with reduced wavefunction overlap with holes. It is proposed that the subsequent reabsorption of acoustic and optical phonons is facilitated by a mismatch in phonon dispersions at the InAs-AlAsSb interface and serves to …


Study On Electrolyte-Gated Graphene Nanoelectronic Biosensors For Biomarker Detection, Jianbo Sun Jan 2018

Study On Electrolyte-Gated Graphene Nanoelectronic Biosensors For Biomarker Detection, Jianbo Sun

Graduate Theses, Dissertations, and Problem Reports

Biosensors are called upon to provide valuable benefits for human society in vital fields such as disease diagnosis, food inspection, environment monitoring, etc. Among the various biosensor architectures, the field effect transistor (FET) biosensors are promising as the next generation nanoelectronic biosensors, particularly attractive for point-of-care biomedical applications. The FET biosensors typically operate by measuring the conductance change of the semiconducting channel induced by the adsorption of the target biomolecules on it. The superior properties of graphene, including the unique electronic characteristics, facile functionalization and good biocompatibility, etc., make it an ideal building block for the FET biosensors. In this …


Dynamic Model And Estimator Development For A Smart Refractory Brick With Embedded Wireless Sensors For Gasifier Applications, Qiao Huang Jan 2017

Dynamic Model And Estimator Development For A Smart Refractory Brick With Embedded Wireless Sensors For Gasifier Applications, Qiao Huang

Graduate Theses, Dissertations, and Problem Reports

The operating temperature is one of the most important variables for gasifier operation. A higher temperature can shorten the service life of the refractory lining. A lower temperature can reduce the extent of carbon conversion and disrupt the flow of molten slag in a slagging gasifier. Therefore temperature is one of the most important variable in a gasifier. In slagging gasifiers, molten slag can penetrate into the refractory lining leading to refractory spallation, undesired downtime, and costly replacement. Even though the temperature and extent of slag penetration are extremely important for the gasifier operation, they cannot be measured reliably by …