Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Temporal Resolution Of Cell Death Signaling Events Induced By Cold Atmospheric Plasma And Electroporation In Human Cancer Cells, Danielle M. Krug, Prasoon K. Diwakar, Ahmed Hassanein Aug 2017

Temporal Resolution Of Cell Death Signaling Events Induced By Cold Atmospheric Plasma And Electroporation In Human Cancer Cells, Danielle M. Krug, Prasoon K. Diwakar, Ahmed Hassanein

The Summer Undergraduate Research Fellowship (SURF) Symposium

Cancer treatment resistance and their invasive and expensive nature is propelling research towards developing alternate approaches to eradicate cancer in patients. Non-thermal, i.e., cold atmospheric plasma (CAP) and electroporation (EP) applied to the surface of cancerous tissue are new methods that are minimally invasive, safe, and selective. These approaches, both independently and synergistically, have been shown to deplete cancer cell populations, but the signaling mechanisms of death and their timelines of action are still widely unknown. To better understand the timeframe of signaling events occurring upon treatment, human cancer cell lines were treated with CAP, EP, and combined CAP with …


Fundamental Characterization Of Oxygen Nanobubbles, John Hamlin, Yi Wen, Joseph Irudayaraj Aug 2017

Fundamental Characterization Of Oxygen Nanobubbles, John Hamlin, Yi Wen, Joseph Irudayaraj

The Summer Undergraduate Research Fellowship (SURF) Symposium

A hypoxic environment is created by tumors’ incredible growth rate. Hypoxia provides radioresistance to the tumors, thus making radiation treatment less effective. The issue is that increasing the radiation leads to increased side effects in patients. Our goal for the oxygen-filled nanobubble is to deliver oxygen to the tumor to lessen radioresistance and make radiation treatment more efficient. However, we need preliminary research to understand and improve the nanobubbles before further research and implementation. To do this, we synthesized different batches of nanobubbles to optimize the production method and find the best container and temperature to store nanobubbles. We measured …


Three-Dimensional Microfluidic Tumor Vascular Model For Investigating Breast Cancer Metastasis, Anastasiia Vasiukhina, Brian H. Jun, Luis Solorio, Pavlos P. Vlachos Aug 2017

Three-Dimensional Microfluidic Tumor Vascular Model For Investigating Breast Cancer Metastasis, Anastasiia Vasiukhina, Brian H. Jun, Luis Solorio, Pavlos P. Vlachos

The Summer Undergraduate Research Fellowship (SURF) Symposium

Metastasis is one of the primary reasons for the high mortality rates in female patients diagnosed with breast cancer. It involves the migration of cancer cells into the circulatory system allowing for the dissemination of cancer cells in distal tissues. Understanding the major processes that occur in cells and tissues during metastasis can help improve currently existing therapeutic methods. In order to understand such mechanisms, developing physiologically relevant tissue models is crucial. Advancements in microfluidics have led to the fabrication of 3D culture models with shear stress gradients and flow control that can recapitulate aspects of the tumor microenvironment in …


Establishing A Lung Model For Evaluation Of Engineered Lung Microbiome Therapies, Kathryn F. Atherton, Stephen Miloro, Jenna Rickus Aug 2017

Establishing A Lung Model For Evaluation Of Engineered Lung Microbiome Therapies, Kathryn F. Atherton, Stephen Miloro, Jenna Rickus

The Summer Undergraduate Research Fellowship (SURF) Symposium

Benzene, a toxin and carcinogen found in air polluted by cigarette smoke, car exhaust, and industrial processes, is associated with the development of leukemia and lymphoma. Other than avoiding exposure, there is no current method to deter the effects of benzene. One potential strategy to prevent these effects is to engineer the bacteria of the human lung microbiome to degrade benzene. To evaluate this novel approach, we must verify that the bacteria remain viable within the lung microenvironment. To do so, lungs were harvested from rats and swabbed to determine the contents of the original lung microbiome. Then green fluorescent …


Nanobubbles Provide Theranostic Relief To Cancer Hypoxia, Christopher M. Long, Pushpak N. Bhandari, Joseph Irudayaraj Aug 2016

Nanobubbles Provide Theranostic Relief To Cancer Hypoxia, Christopher M. Long, Pushpak N. Bhandari, Joseph Irudayaraj

The Summer Undergraduate Research Fellowship (SURF) Symposium

Hypoxia is a common motif among tumors, contributing to metastasis, angiogenesis, cellular epigenetic abnormality, and resistance to cancer therapy. Hypoxia also plays a pivotal role in oncological studies, where it can be used as a principal target for new anti-cancer therapeutic methods. Oxygen nanobubbles were designed in an effort to target the hypoxic tumor regions, thus interrupting the hypoxia-inducible factor-1α (HIF-1α) regulatory pathway and inhibiting tumor progression. At less than 100nm, oxygen nanobubbles act as a vehicle for site-specific oxygen delivery, while also serving as an ultrasound contrast agent for advanced imaging purposes. Through in vitro and in vivo studies, …


Accuracy And Precision Of Computer-Simulated Tissue Temperatures In Individual Human Intracranial Tumours Treated With Interstitial Hyperthermia, J A. Deford, Charles F. Babbs, U H. Patel, N E. Fearnot, J A. Marchosky, C J. Moran Jan 1990

Accuracy And Precision Of Computer-Simulated Tissue Temperatures In Individual Human Intracranial Tumours Treated With Interstitial Hyperthermia, J A. Deford, Charles F. Babbs, U H. Patel, N E. Fearnot, J A. Marchosky, C J. Moran

Weldon School of Biomedical Engineering Faculty Publications

Accurate knowledge of tissue temperature is necessary for effective delivery of clinical hyperthermia in the treatment of malignant tumours. This report compares computer-predicted versus measured intratumoral temperatures in 11 human subjects with intracranial tumours, treated with a conceptually simple 'conductive' interstitial hyperthermia system. Interstitial hyperthermia was achieved by the use of parallel arrays of implanted, electrically heated catheters. The tissue was warmed by thermal conduction and blood convection. Simulation of intratumoral temperatures was achieved by solving a modified bioheat transfer equation on a digital computer using a finite difference method. Comparison of intratumoral temperatures from simulations and measured values differed …


Use Of Combined Systemic Hypothermia And Local Heat Treatment To Enhance Temperature Differences Between Tumor And Normal Tissues, Charles F. Babbs, William D. Voorhees Iii, Robert R. Clark, David P. Dewitt Jan 1985

Use Of Combined Systemic Hypothermia And Local Heat Treatment To Enhance Temperature Differences Between Tumor And Normal Tissues, Charles F. Babbs, William D. Voorhees Iii, Robert R. Clark, David P. Dewitt

Weldon School of Biomedical Engineering Faculty Publications

The feasibility of combining local heat treatment with wholebody hypothermia in an effort to improve therapeutic gain was assessed. Superficial, non perfused phantom tumors were fashioned in eight anesthetized mongrel dogs by transplantation of the spleen from the abdomen to a subcutaneous site on the hind limb. After pretreatment of the animal with the vasodilator hydralazine (0.5 mg/kg, IV) to enhance normal tissue perfusion, the spleen implant was heated with a 2450-MHz microwave diathermy apparatus, first with the animal's core body temperature in the normal range (39°C) and then after the animal had been packed in ice to reduce core …


Biology Of Local Heat Therapy For Cancer, Charles F. Babbs Jan 1982

Biology Of Local Heat Therapy For Cancer, Charles F. Babbs

Weldon School of Biomedical Engineering Faculty Publications

Successful cancer therapy must selectively destroy tumor tissue while sparing the host's normal tissues. Local heat treatment can have such a selective effect because abnormalities in tumor blood vessels supply less oxygen to heat-stressed tumor cells and are less efficient in cooling tumor tissue by blood perfusion.


Theoretical Feasibility Of Vasodilator-Enhanced Local Tumor Heating, Charles F. Babbs, David P. Dewitt, William D. Voorhees, Janet S. Mccaw, Rosanna C. Chan Jan 1982

Theoretical Feasibility Of Vasodilator-Enhanced Local Tumor Heating, Charles F. Babbs, David P. Dewitt, William D. Voorhees, Janet S. Mccaw, Rosanna C. Chan

Weldon School of Biomedical Engineering Faculty Publications

Normal arterioles, in contrast to the abnormal microvasculature of many solid tumors, provide a target for selective drug action that can enhance local heat treatment of the tumors. Measurements of tissue blood flow with radioactive microspheres and estimates of changes in blood flow with thermal clearance methods revealed that vasodilator drugs either decreased or did not alter blood flow in hamster melanoma, rat hepatoma, and canine transmissible venereal tumor, while increasing perfusion in adjacent normal tissues 2 to 4-fold. Solutions of the bio-heat transfer equation, which take into account such selective effects of vasodilators on blood flow in normal tissues, …


Physical Principles Of Local Heat Therapy For Cancer, Charles F. Babbs, David P. Dewitt Jan 1981

Physical Principles Of Local Heat Therapy For Cancer, Charles F. Babbs, David P. Dewitt

Weldon School of Biomedical Engineering Faculty Publications

Local hyperthermia therapy for cancer can produce selective heating of solid tumors on the basis of known physical laws. If energy is deposited in the general region of the tumor, temperature tends to develop in the tumor higher than that in surrounding normal tissues. The goal of therapy is to achieve cytotoxic temperature elevations in the tumor for an adequate period of time, without damaging nearby normal tissues. Several modalities exist for local heat treatment, of which radiofrequency and ultrasound offer the most promise for controlled, localized heating at depth. A paucity of blood flow in the tumor compared to …