Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Combinatorial Approaches For Effective Design, Synthesis, And Optimization Of Enzyme-Based Conjugates, Jordan Scott Chapman Jan 2022

Combinatorial Approaches For Effective Design, Synthesis, And Optimization Of Enzyme-Based Conjugates, Jordan Scott Chapman

Graduate Theses, Dissertations, and Problem Reports

The specificity and efficiency with which enzymes catalyze selective chemical reactions far exceeds the performance of traditional heterogeneous catalysts that are predominant in industrial applications such as conversion of commodity chemicals to value-added products, fuel cells, and petroleum refinement. Moreover, biocatalysts exhibit exceptionally high product turnover at ambient conditions with little health and environmental burden. These advantageous qualities have led to the prolific use of enzyme catalysis in pharmaceutical, detergents, and food preservation industries wherein their use has greatly reduced waste generation, Unfortunately, the full slate of benefits that enzymes can impart to a broader range of chemical processes is …


Promotion Of Human Schwann Cell Proliferation Using Heparin/Collagen Coated Nerve Conduits, John Magness May 2021

Promotion Of Human Schwann Cell Proliferation Using Heparin/Collagen Coated Nerve Conduits, John Magness

Chemical Engineering Undergraduate Honors Theses

Often in the aftermath of an injury or surgery, the sense of touch and muscle control is lost in the affected area as nerves are damaged or severed and fail to grow back completely. The regeneration of the nerve cells can be promoted by treating the nerves with nerve conduits. Nerve conduits are hollow cylinders of bio-compatible materials that can be surgically implanted to the disconnected nerve to promote and direct the growth of nerves. The objectives of this research are to investigate the ability of nerve conduits treated with layer-by-layer coatings to promote the growth of Schwann cells, to …


Nature-Inspired Material Strategies Towards Functional Devices, Sayantan Pradhan Jan 2021

Nature-Inspired Material Strategies Towards Functional Devices, Sayantan Pradhan

Theses and Dissertations

Naturally sourced, renewable biomaterials possess outstanding advantages for a multitude of biomedical applications owing to their biodegradability, biocompatibility, and excellent mechanical properties. Of interest in this dissertation are silk (protein) and chitin (polysaccharide) biopolymers for the fabrication of functional biodevices. One of the major challenges restricting these materials beyond their traditional usage as passive substrate materials is the ability to combine them with high-resolution fabrication techniques. Initial research work is directed towards the fabrication of micropatterned, flexible 2D substrates of silk fibroin and chitin using bench-top photolithographic techniques. Research is focused on imparting electrochemical properties to silk proteins using conducting …


3-D Silk Fibroin Porous Particles Created By The Ouzo Effect For Biomedical Applications, Ashley Nicole Lamb May 2020

3-D Silk Fibroin Porous Particles Created By The Ouzo Effect For Biomedical Applications, Ashley Nicole Lamb

UNLV Theses, Dissertations, Professional Papers, and Capstones

Due to its high biocompatibility and biodegradability, silk fibroin – produced from

Bombyx mori (B. mori) cocoons – has been at the forefront of research for many

biomedical application formats: hydrogels, films, microspheres, and porous

sponges/scaffolding, to name a few. For drug delivery, in particular, porous particles are

desirable for their large surface area, uniform and tunable pore structure, and high

porosity. This thesis focuses on the fabrication of porous particles from silk fibroin by the

very interesting Ouzo effect. The Ouzo effect, so named because of the Greek

beverage ouzo, describes the phenomenon of an ethanol + anethole oil …


Characterization Of Nano-Cellulose Based Composites For Biomedical Applications, Mitchell P. Chesley Aug 2019

Characterization Of Nano-Cellulose Based Composites For Biomedical Applications, Mitchell P. Chesley

Electronic Theses and Dissertations

The number of orthopedic surgeries performed globally has steadily increased over the past decade due to the standardization of procedures as well as technological advancements. During this time orthopedic devices have been composed predominantly of metals, such as Titanium, Vanadium, Molybdenum, and Stainless steel, as well as their alloys, due to the high strength and durability of these materials. However, metals may, in fact, be suboptimal for orthopedic devices. For example, metals exhibit Young’s modulus much greater than the surrounding bone, inducing localized stress-shielding promoting cortical atrophy, which can lead to osteoporosis. In recent years polymers have been successfully explored …


Determining The Effect Of Locally Delivered Bioactive Modulators On Macrophage Activation At The Implantation Site Of Different Biomaterials In Rats, Kamel Alkhatib Aug 2018

Determining The Effect Of Locally Delivered Bioactive Modulators On Macrophage Activation At The Implantation Site Of Different Biomaterials In Rats, Kamel Alkhatib

Graduate Theses and Dissertations

Altering the foreign body reaction by targeting macrophages has been of interest in the biomaterials field to improve the integration of longevity of implanted biomedical devices. The objective of this dissertation was to study the effect of locally delivered bioactive modulators on macrophage activation at the implantation site of different biomaterials in rats. Iloprost, a prostacyclin analog, was tested for its ability to direct macrophages to their pro-wound healing phenotype after the implantation of microdialysis probe in the subcutaneous space of male Sprague Dawley rats. This study showed that iloprost can shift macrophage activation states in vivo to the pro-wound …


Effect Of Hemiarthroplasty Implant Contact Geometry And Material On Early Cartilage Wear, Alana Khayat Sep 2015

Effect Of Hemiarthroplasty Implant Contact Geometry And Material On Early Cartilage Wear, Alana Khayat

Electronic Thesis and Dissertation Repository

Hemiarthroplasty is a minimally invasive, cost-effective alternative to total arthroplasty in joints of the upper limb. Though these procedures reduce patient morbidity while restoring joint kinematics, their longevity is limited by wear of the adjacent cartilage. This work investigates the roles of contact geometry and implant stiffness on cartilage wear with the aim of elucidating the mechanics that contribute to cartilage damage. An in vitro study examined the influence of implant geometry on cartilage wear using a pin-on-plate wear simulator. A significant decrease in volumetric wear was observed as contact area increased, which suggests that maximizing contact area should be …


Calcium Phosphate-Based Resorbable Biomaterials For Bone Regeneration, Daniel O. Costa Oct 2012

Calcium Phosphate-Based Resorbable Biomaterials For Bone Regeneration, Daniel O. Costa

Electronic Thesis and Dissertation Repository

Bone defects are a prevalent problem in orthopedics and dentistry. Calcium phosphate-based coatings and nanocomposites offer unique solutions towards producing scaffolds with suitable physical, mechanical and biological properties for bone regeneration.

We developed a novel method to synthesize hydroxyapatite (HA) particles with high aspect ratio using sol-gel chemistry and hydrothermal treatment. We obtained tunable pure-phase carbonated-HA in the form of micro/nanorods and nanowires (diameters 25-800 nm). To mimic the structure of bone, HA nanowires were homogenously mixed within poly(ε-caprolactone) (PCL) to produce nanocomposites with improved mechanical properties as determined by uniaxial tensile testing.

Surface chemistry and topography of biomaterials play …