Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

The Biomechanical Role Of Scaffolds In Augmented Rotator Cuff Tendon Repairs, Amit Aurora, Jesse A. Mccarron, Antonie J. Van Den Bogert, Jorge E. Gatica, Joseph P. Iannotti, Kathleen A. Derwin Aug 2012

The Biomechanical Role Of Scaffolds In Augmented Rotator Cuff Tendon Repairs, Amit Aurora, Jesse A. Mccarron, Antonie J. Van Den Bogert, Jorge E. Gatica, Joseph P. Iannotti, Kathleen A. Derwin

Mechanical Engineering Faculty Publications

Background

Scaffolds continue to be developed and used for rotator cuff repair augmentation; however, the appropriate scaffold material properties and/or surgical application techniques for achieving optimal biomechanical performance remains unknown. The objectives of the study were to simulate a previously validated spring-network model for clinically relevant scenarios to predict: (1) the manner in which changes to components of the repair influence the biomechanical performance of the repair and (2) the percent load carried by the scaffold augmentation component.

Materials and methods

The models were parametrically varied to simulate clinically relevant scenarios, namely, changes in tendon quality, altered surgical technique(s), and …


Simulation Of Lower Limb Axial Arterial Length Change During Locomotion, Melissa D. Young, Matthew C. Streicher, Richard J. Beck, Antonie J. Van Den Bogert, Azita Tajaddini, Brian L. Davis May 2012

Simulation Of Lower Limb Axial Arterial Length Change During Locomotion, Melissa D. Young, Matthew C. Streicher, Richard J. Beck, Antonie J. Van Den Bogert, Azita Tajaddini, Brian L. Davis

Mechanical Engineering Faculty Publications

The effect of external forces on axial arterial wall mechanics has conventionally been regarded as secondary to hemodynamic influences. However, arteries are similar to muscles in terms of the manner in which they traverse joints, and their three-dimensional geometrical requirements for joint motion. This study considers axial arterial shortening and elongation due to motion of the lower extremity during gait, ascending stairs, and sitting-to-standing motion. Arterial length change was simulated by means of a graphics based anatomic and kinematic model of the lower extremity. This model estimated the axial shortening to be as much as 23% for the femoropopliteal arterial …