Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Leveraging Cell-Substrate Adhesion And Cell Migratory Properties In Skeletal Muscle Constructs And Cancer Metastasis Assays, Lauren E. Mehanna Jan 2023

Leveraging Cell-Substrate Adhesion And Cell Migratory Properties In Skeletal Muscle Constructs And Cancer Metastasis Assays, Lauren E. Mehanna

Theses and Dissertations--Chemical and Materials Engineering

Volumetric muscle loss (VML) remains one of the few skeletal muscle injuries without a reliable and repeatable treatment. In large volume muscle injuries, muscle fibers as well as the surrounding connective tissue are damaged, preventing therapeutic muscle stem cells, called myogenic progenitor cells (MPCs), from reaching the injury site and initiating repair. There is a clinical need to rapidly fabricate in vitro muscle tissue constructs that mimic the native tissue organization, with aligned myotubes, for insertion and integration at the patient’s injury site. In this dissertation, we utilize the MPC’s natural propensity to close gaps across an injury site to …


Developing A 3d In Vitro Model By Microfluidics, Hung-Ta Chien Jan 2018

Developing A 3d In Vitro Model By Microfluidics, Hung-Ta Chien

Dissertations and Theses

In vitro tissue models play an important role in providing a platform that mimics the realistic tissue microenvironment for stimulating and characterizing the cellular behavior. In particular, the hydrogel-based 3D in vitro models allow the cells to grow and interact with their surroundings in all directions, thus better mimicking in vivo than their 2D counterparts. The objective of this thesis is to establish a 3D in vitro model that mimics the anatomical and functional complexity of the realistic cancer microenvironment for conveniently studying the transport coupling in porous tissue structures. We pack uniform-sized PEGDA-GelMA microgels in a microfluidic chip to …