Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomaterials

Theses/Dissertations

2021

Institution
Keyword
Publication

Articles 1 - 30 of 49

Full-Text Articles in Engineering

Development Of Polymeric Cxcr4 Targeting Carriers For Sirna Delivery To Treat Acute Kidney Injury, Weimin Tang Dec 2021

Development Of Polymeric Cxcr4 Targeting Carriers For Sirna Delivery To Treat Acute Kidney Injury, Weimin Tang

Theses & Dissertations

Acute kidney injury (AKI) is a major kidney disease that is characterized by a sudden loss of renal function which manifests by a decrease in urine output and an increase in serum creatinine. AKI is a global healthcare burden associated with high morbidity, mortality, and increasing cost. Currently there are no effective pharmacological treatments available. Apoptosis induced by p53 has been demonstrated as an important pathological mechanism for the development of AKI. Meanwhile, CXCR4/SDF-1 axis has been associated with the inflammation during AKI, and CXCR4 is overexpressed on injured tubules. This dissertation hypothesized that polycations with CXCR4 targeting ability could …


Plasmonically-Enhanced Dna-Rna Hybrid-Based Bioassay For Amplification-Free Quantification Of Sars-Cov-2, Yuxiong Liu Dec 2021

Plasmonically-Enhanced Dna-Rna Hybrid-Based Bioassay For Amplification-Free Quantification Of Sars-Cov-2, Yuxiong Liu

McKelvey School of Engineering Theses & Dissertations

Corona Virus Disease 2019 (COIVD-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a highly infectious respiratory illness. Within just a few months, it spread around the whole world and became a global pandemic. Real-time reverse-transcription polymerase chain reaction (RT-PCR) works as a gold standard method diagnosing COVID-19 with high sensitivity and specificity. But due to the programs of RT-PCR, it usually takes more than 24 hours to get the results while specialized devices are also required. False-negative results can happen as well using RT-PCR which increase the risk of spreading coronavirus. To promote quicker detection of COVID-19, …


Influencing The Inflammatory Response Through Multi-Scale Geometry, Antibiotic Release, And Fluid Management In A Textile-Based Biomaterial Wound Dressing, Elizabeth Gianino Dec 2021

Influencing The Inflammatory Response Through Multi-Scale Geometry, Antibiotic Release, And Fluid Management In A Textile-Based Biomaterial Wound Dressing, Elizabeth Gianino

All Dissertations

The total population of diagnosed and undiagnosed diabetes mellitus in the United states is expected to rise by 54% between the years of 2015 and 2030 contributing to $200 billion in health care expense. The exponential rise in common diabetic wounds, such as diabetic foot ulcers, puts a large population at risk for complications such as infection, amputation, and even death. Peripheral neuropathy leading to late diagnoses, patient non-compliance, and lack of holistic treatment options all contribute to complications with the incidence of new ulcer formation after treatment reaching 50%. This work explores the design, development, and in vitro evaluation …


Time-Lapse Observation Of Sarcomeric Addition In Hypertrophic Models Based On A Tissue Like Cardiomyocyte Culture, Ailin Wei Dec 2021

Time-Lapse Observation Of Sarcomeric Addition In Hypertrophic Models Based On A Tissue Like Cardiomyocyte Culture, Ailin Wei

All Dissertations

Cardiac hypertrophy is the response of the heart to increased mechanical stress exerted on the heart. In a hypertrophic heart, the muscles elongate or/and thicken with cardiomyocytes growing sizes. It is assumed that cardiomyocytes elongate by adding sarcomeres in series; the cardiomyocytes thicken with the addition of sarcomeres in the parallel position.

In this study, a tissue-like culture model was achieved with step-like ICDs. Uniaxial static stretch has been applied to our unique culture model for studying mechanical-load-induced cardiac hypertrophy. Hypertrophic responses of these cardiomyocytes have been confirmed on transcriptional and translational levels in our tissue-like model. The two-photon excitation …


Development Of Solution Blow Spun Nanofibers As Electrical And Whole Cell Biosensing Interfaces, Craig Levar Miller Dec 2021

Development Of Solution Blow Spun Nanofibers As Electrical And Whole Cell Biosensing Interfaces, Craig Levar Miller

All Dissertations

Infectious pathogens place a huge burden on the US economy with more than $120 billion spent annually for direct and indirect costs for the treatment of infectious diseases. Rapid detection schemes continue to evolve in order to meet the demand of early diagnosis. In chronic wound infections, bacterial load is capable of impeding the healing process. Additionally, bacterial virulence production works coherently with bacterial load to produce toxins and molecules that prolongs the healing cycle. This work examines the use of nonwoven polymeric conductive and non-conductive nanofiber mats as synthetic biosensor scaffolds, drug delivery and biosensor interface constructs. A custom-made …


Organic-Inorganic Hybrid Biomaterials For Bone Tissue Engineering And Drug Delivery, Neda Aslankoohi Oct 2021

Organic-Inorganic Hybrid Biomaterials For Bone Tissue Engineering And Drug Delivery, Neda Aslankoohi

Electronic Thesis and Dissertation Repository

Bone biomaterials prepared from a combination of biodegradable polymers and bioactive glasses offer several advantages, including favorable cell interactions, selective gene expression, and delivery of biomolecules. Furthermore, the interaction of the organic and inorganic phases at the molecular level results in a single-phase hybrid material possessing synergistic properties.

This research aimed to design bone biomaterials from α-amino acid-based poly(ester amide) (PEA) and tertiary bioactive glasses using a sol-gel process. Since incorporating calcium into the bioactive glass network is challenging at sol-gel reaction temperatures, calcium ethoxide and calcium chloride were studied as precursors, and the optimum reaction conditions were identified. Mesoporous …


Tools And Strategies For The Patterning Of Bioactive Molecules And Macromolecules, Daniel J. Valles Sep 2021

Tools And Strategies For The Patterning Of Bioactive Molecules And Macromolecules, Daniel J. Valles

Dissertations, Theses, and Capstone Projects

Hypersurface Photolithography (HP) is a printing method for fabricating structures and patterns composed of soft materials bound to solid surfaces and with ~1 micrometer resolution in the x, y, and z dimensions. This platform leverages benign, low intensity light to perform photochemical surface reactions with spatial and temporal control of irradiation, and, as a result, is particularly useful for patterning delicate organic and biological material. In particular, surface- initiated controlled radical polymerizations can be leveraged to create arbitrary polymer and block- copolymer brush patterns. Chapter 1 will review the advances in instrumentation architectures from our group that have made these …


Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang Sep 2021

Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang

Dissertations, Theses, and Capstone Projects

Nature usually divides complex systems into smaller building blocks specializing in a few tasks since one entity cannot achieve everything. Therefore, self-assembly is a robust tool exploited by Nature to build hierarchical systems that accomplish unique functions. The cell membrane distinguishes itself as an example of Nature’s self-assembly, defining and protecting the cell. By mimicking Nature’s designs using synthetically designed self-assemblies, researchers with advanced nanotechnological comprehension can manipulate these synthetic self-assemblies to improve many aspects of modern medicine and materials science. Understanding the competing underlying molecular interactions in self-assembly is always of interest to the academic scientific community and industry. …


Characterization Of Application-Driven Sol-Gel Coated Meshes And Composites, Armaghan Naderi Aug 2021

Characterization Of Application-Driven Sol-Gel Coated Meshes And Composites, Armaghan Naderi

LSU Doctoral Dissertations

Surface engineering is a multi-disciplinary research area that encompasses disciplines such as materials science, chemistry, mechanical engineering, and electrical engineering. Coating is a surface modification technique in surface engineering, applied on the surface of a substrate (i.e., bulk material), to cover/protect it from environmental degradation or to modify/improve surface properties for specific applications. This PhD research presents an in-depth investigation of sol-gel ceramic coatings to modify surface characteristics of bulk materials for two specific applications: 1) antistatic/antidust applications, and 2) biomaterial implant applications.

First, zirconia antistatic thin films on glass substrates, and their application to polymer-based composites, was studied. Zirconia …


Biomaterial For Cervical Intervertebral Disc Prosthesis, Helium Mak Aug 2021

Biomaterial For Cervical Intervertebral Disc Prosthesis, Helium Mak

Electronic Thesis and Dissertation Repository

Recent long-term follow-up studies have shown that the cervical disc arthroplasty treatment have potentials in developing surrounding heterotopic ossification (HO). While its cause requires further investigation, this thesis has hypothesized that it may be the result of the continual remodeling of the injured vertebrae caused by the prostheses with smaller footprints introducing abnormal stresses. The research objective of this thesis is to develop a new prosthesis material that can be molded into any form conforming to the size and shape of the end-plates of the affected patient vertebrae. For prototype development, a composite material consisting of 10wt% polyvinyl alcohol cryogel …


Development Of Multifunctional Drug Delivery Systems For Locoregional Therapy, Xinyi Li Jul 2021

Development Of Multifunctional Drug Delivery Systems For Locoregional Therapy, Xinyi Li

Electronic Thesis and Dissertation Repository

Locoregional treatment is the specific delivery of therapeutics to their desired sites of action with minimized systemic adverse effects. In this approach, drug is administered through topical instillation, inhalation, intra-lesional or intra-arterial injection. Decades of experience in locoregional treatment have delivered meaningful benefits to patients with localized diseases (e.g., osteoarthritis, ocular disorders and liver cancers). However, improvements are required for this type of treatment to be more effective. For transarterial chemoembolization (TACE) therapy of hepatocellular carcinoma (HCC), the most current approaches do not allow repeat treatment as the drug delivery vehicle is not degradable. In addition, image contrast agents for …


Synthesis And Performance Testing Of Ecm Fiber Scaffolds, Cassandra Reed Jul 2021

Synthesis And Performance Testing Of Ecm Fiber Scaffolds, Cassandra Reed

Graduate Theses and Dissertations

The progression of regenerative medicine has advanced the treatment of multiple illnesses and injuries throughout the years. A good example of the benefits of this research is the work that has gone into volumetric muscle loss (VML), where more than 20% of the muscle is loss. Skeletal muscle makes up 40% of the human body so a loss of that size greatly diminishes the strength, the flexibility, physiology, and quality of life of the injured individual. For that reason, various techniques are used to counteract the loss of structure and innate cellular signaling in order to circumvent that from happening. …


Enhancing The Intracellular Availability Of Protein Cargoes In Polymer-Mediated Delivery, Christopher R. Hango Jun 2021

Enhancing The Intracellular Availability Of Protein Cargoes In Polymer-Mediated Delivery, Christopher R. Hango

Doctoral Dissertations

Protein drugs, including antibodies, are rapidly emerging as the top-selling pharmaceuticals worldwide owing to their unparalleled specificity and biocompatibility. However, none of the currently-approved protein therapeutics act intracellularly, despite the vast majority of potential drug targets residing within the cell. This is due mainly to the paramount challenge of transporting hydrophilic macromolecular cargoes across the plasma membrane. As such, effective protein carriers are essential for the advancement of modern medicine. Despite significant advances, many challenges still plague protein delivery. Following membrane transduction, delivery vectors must preserve the structure and activity of their cargoes while transporting them to the correct subcellular …


3d Printed Polypyrrole Scaffolds For Ph Dependent Drug Delivery With Applications In Bone Regeneration, Matthew T. Lawrence Jun 2021

3d Printed Polypyrrole Scaffolds For Ph Dependent Drug Delivery With Applications In Bone Regeneration, Matthew T. Lawrence

Electronic Thesis and Dissertation Repository

Areas of large bone loss are typically healed using autologous bone grafts, seen as the gold standard of care. These materials have a complication rate of 10–40% during harvesting and are limited by the quantity available; therefore the use of 3D printed polymer scaffolds as bone graft alternatives are proposed. Polypyrrole (PPy) is a biocompatible electroactive polymer that has metal-like electrical properties that can be harnessed to hold and release charged drug molecules, triggered by a change in pH. pH fluctuations are seen inside the human body in areas of bone regrowth, which would act as the triggering mechanism for …


Evaluation Of Blood Vessel Mimic Scaffold Biocompatibility, Nicole M. Abraham Jun 2021

Evaluation Of Blood Vessel Mimic Scaffold Biocompatibility, Nicole M. Abraham

Master's Theses

The Tissue Engineering Research Lab at California Polytechnic State University, San Luis Obispo focuses on creating tissue-engineered blood vessel mimics (BVMs) for use in preclinical testing of vascular devices. These BVMs are composed of electrospun scaffolds made of an assortment of polymers that are seeded with different cell types. This integration of polymers with cells leads to the need for biocompatibility testing of the polymer scaffolds. Many of the lab’s newest scaffolds have not been fully characterized for biologic interactions. Therefore, the first aim of this thesis developed methods for in vitro cytotoxicity testing of polymers used in the fabrication …


The Impact Of Myoblast Transplantation On Collateral Capillary Arteriogenesis And Macrophage Phenotype, Christine Hue Do Jun 2021

The Impact Of Myoblast Transplantation On Collateral Capillary Arteriogenesis And Macrophage Phenotype, Christine Hue Do

Biomedical Engineering

Gangrene, pain, loss of limb function, amputation, and death are only few of the grievous consequences associated with peripheral arterial disease (PAD), a vascular disease caused by an obstruction that narrows the blood vessels. Since some patients have collateral vessels that can re-route blood to its downstream destination, much focus has been spotlighted upon discovering the mechanism of this process, termed arteriogenesis, as well as cell therapies to increase arterial diameter of collateral vessels. Since some patients do not have native pre-existing collateral vessels, another method to re-route blood is through arterialized collateral capillaries (ACC), which is the conversion of …


Injectable Ct/Mri Contrast Agent For Gastrointestinal Tumor Tracking, Luna Zhang May 2021

Injectable Ct/Mri Contrast Agent For Gastrointestinal Tumor Tracking, Luna Zhang

McKelvey School of Engineering Theses & Dissertations

Gastrointestinal cancers remain to be of the most common and deadly cancers worldwide. Early detection and treatments are crucial for reducing mortality and improving patient outcome. Radiation therapy is a non-invasive localized tumor treatment method, and utilizes radiation to kill the cancerous cells and shrink tumors at specific sites. Precise localization at the target tumor site is therefore important before radiation therapy, especially for gastrointestinal tumor sites located in the moving bowel. Currently, invasive endoscopies along with ink tattoos are used for identifying tumor location, which often require sedation and bring much discomfort. Imaging tests, including CT and MRI, play …


Machine Learning Applied To Colloidal Properties Of Perfluorocarbon Nanoemulsions For Imaging In Ards/Ali, Marco Hosfeld May 2021

Machine Learning Applied To Colloidal Properties Of Perfluorocarbon Nanoemulsions For Imaging In Ards/Ali, Marco Hosfeld

Electronic Theses and Dissertations

Acute Respiratory distress Syndrome (ARDS) and Acute Lung Injury (ALI) are inflammatory lung pathologies consisting of non-hydrostatic pulmonary edema leading to hypoxia and impaired gas exchange in the lungs. ARDS/ALI is both difficult to study and treat as it is not in itself a specific pathology but rather a syndrome consisting of many pathologies that vary case by case. It is, however, consistently characterized by an explosive acute inflammatory response in the lung parenchyma leading to hypoxia. Although time has seen to an increase in the understanding of ARDS/ALI, the mortality rate remains in the range of 30-50%. For these …


Nanocellulose Conduits For Enhanced Regeneration Of Peripheral Nerve Injuries, Nicklaus R. Carter May 2021

Nanocellulose Conduits For Enhanced Regeneration Of Peripheral Nerve Injuries, Nicklaus R. Carter

Electronic Theses and Dissertations

Peripheral neuropathy is estimated to afflict 20 million people in the United States. Most cases of neuropathy result from physical injuries and trauma arising from automobile accidents and war. Peripheral nerves have the intrinsic ability to regenerate over time, bridging the injury gap. However native regeneration is limited to a distance of only a few millimeters. Current methods utilized to assist in the regeneration of peripheral nerves over distances exceeding those amenable to native repair include nerve autografts and allografts, and implantation of conduits. Nerve autografts are regarded as the most effective method but require a second surgical site to …


Evaluating Cellular Response Of Different Valve Interstitial Cell (Vic) Phenotypes To Angiotensin I, Smit Patel May 2021

Evaluating Cellular Response Of Different Valve Interstitial Cell (Vic) Phenotypes To Angiotensin I, Smit Patel

Biomedical Engineering Undergraduate Honors Theses

Calcific Aortic Valve Disease (CAVD), one of the leading causes of death in the United States, is characterized by diminished functioning and limited movement of the aortic valve (AV) due to increased thickening, disorganized extracellular matrix elastin fibers, increased collagen content, and abnormal deposition and formation of calcium nodules on the AV [1, 2]. There are two types of CAVD: i) Aortic valve sclerosis (AVS), in which patients suffer from tissue hardening, fibrosis, and early calcification, and ii) calcific aortic stenosis (CAS), representative by excessive calcification on the AV and reduced AV opening, are the two main forms of CAVD …


Developing Aligned Nerve Scaffolds In A 3d Type-I Collagen Gel, Gabriel David May 2021

Developing Aligned Nerve Scaffolds In A 3d Type-I Collagen Gel, Gabriel David

Biomedical Engineering Undergraduate Honors Theses

Despite significant progress in the field of peripheral nerve repair, clinical success is still limited, leaving millions to suffer from peripheral neuropathy with billions spent every year for treatment. Nerve repair methods that are capable of maximizing the regenerative properties of peripheral nerves are greatly desired in the field of medical science. This research aims to fill the gap between modern methods and the future of nerve repair by creating type-I collagen scaffolds with aligned degradation pores that will assist and nurture nerves growing through them. This is achieved by incorporating adipose stem cells into type-I collagen hydrogels and aligning …


Evaluating The Effects Of Wood Source On The Physicochemical Properties Of Crosslinked Cellulose Nanocrystals, Helena Tchoungang Nkeumen May 2021

Evaluating The Effects Of Wood Source On The Physicochemical Properties Of Crosslinked Cellulose Nanocrystals, Helena Tchoungang Nkeumen

Graduate Theses and Dissertations

Cellulose is an abundant and naturally occurring biopolymer that has been used by humans for food, shelter, and clothing for about two centuries now. Highly crystalline nanoparticles derived from cellulose, called cellulose nanocrystals (CNCs), show great potential to meet the rising need for sustainable and nontoxic materials for biomedical applications. However, multiple biomedical applications of CNCs, such as those involving their use in tissue engineering scaffolds, require CNC-based structures to be stable in aqueous environments, a property that native CNCs do not possess due to their inherent hydrophilicity. Chemical crosslinking of CNCs addresses this issue by providing aqueous stability to …


Design And Control Of A Peristaltic Pump To Simulate Left Atrial Pressure In A Conductive Silicone Model, Jeremy Collins May 2021

Design And Control Of A Peristaltic Pump To Simulate Left Atrial Pressure In A Conductive Silicone Model, Jeremy Collins

Mechanical Engineering Undergraduate Honors Theses

According to the CDC, atrial fibrillation is responsible for more than 454,000 hospitalizations and approximately 158,000 deaths per year. A common treatment for atrial fibrillation is catheter ablation, a process in which a long flexible tube is guided through the femoral artery and to the source of arrhythmia in the heart, where it measures the electrical potential at various locations and converts problematic heart tissue to scar tissue via ablation. This paper details the design and control of a low-cost ($400) peristaltic pump system using repetitive control to replicate blood pressure in the left atrium in a conductive silicone model …


Peptoid-Functionalized Gold Nanoparticles For Zika Virus Envelope Protein Detection, Meagan Olsen May 2021

Peptoid-Functionalized Gold Nanoparticles For Zika Virus Envelope Protein Detection, Meagan Olsen

Chemical Engineering Undergraduate Honors Theses

Detection and identification of viral pathogens is essential in providing effective and rapid medical treatment. Well-established detection methods can be expensive, slow, and sometimes unable to provide the needed sensitivity and specificity. The Zika virus is one clinically relevant pathogen that cannot be easily identified due to cross-reactivity with other viruses from the same family. Electrochemical sensors enhanced with peptoid-functionalized gold nanoparticles (AuNPs) are an alternative to traditional techniques that offers rapid, accurate, label-free pathogen detection for point-of-care diagnostics. To this end, a peptoid capable of binding to the Zika virus envelope protein was developed and its binding affinity for …


Promotion Of Human Schwann Cell Proliferation Using Heparin/Collagen Coated Nerve Conduits, John Magness May 2021

Promotion Of Human Schwann Cell Proliferation Using Heparin/Collagen Coated Nerve Conduits, John Magness

Chemical Engineering Undergraduate Honors Theses

Often in the aftermath of an injury or surgery, the sense of touch and muscle control is lost in the affected area as nerves are damaged or severed and fail to grow back completely. The regeneration of the nerve cells can be promoted by treating the nerves with nerve conduits. Nerve conduits are hollow cylinders of bio-compatible materials that can be surgically implanted to the disconnected nerve to promote and direct the growth of nerves. The objectives of this research are to investigate the ability of nerve conduits treated with layer-by-layer coatings to promote the growth of Schwann cells, to …


Peptoid-Based Microsphere Coatings For Biomaterial Applications, Jesse Leland Roberts May 2021

Peptoid-Based Microsphere Coatings For Biomaterial Applications, Jesse Leland Roberts

Graduate Theses and Dissertations

Peptoids are peptidomimetic oligomers that predominantly harness similarities to peptides for biomimetic functionality. The incorporation of chiral, aromatic side chains in the peptoid sequence allows for the formation of distinct secondary structures and self-assembly into supramolecular assemblies, including microspheres. Peptoid microspheres can be coated onto substrates for potential use in biosensor technologies, tissue engineering platforms, and drug-delivery systems. They have the potential for use in biomedical applications due to their resistance to proteolytic degradation and low immunogenicity. This dissertation focuses on the physical characteristics and robustness of the peptoid microsphere coatings in various physiological conditions, along with their ability to …


The Role Of Spider Silk In Peripheral Nerve Regeneration, Langston Forbes-Jackson May 2021

The Role Of Spider Silk In Peripheral Nerve Regeneration, Langston Forbes-Jackson

Undergraduate Honors Theses

Spider silk neural guidance channels (NGCs) are highly important innovations in the field of regenerative medicine. This paper will discuss the evidence in the literature that supports their function in regenerative medicine and provide a template for future experiments in the field. While many studies within the past 15 years have demonstrated the validity of spider silk as a scaffold for peripheral nerve regeneration, the molecular mechanics that facilitate regeneration are poorly understood. An emphasis on using silk from orb weaving spiders in particular may have caused researchers to overlook other spiders whose silk could prove to have vastly different …


Immunomodulatory Biomaterials For Cancer Immunotherapy, Larry Donnell Stokes Jr May 2021

Immunomodulatory Biomaterials For Cancer Immunotherapy, Larry Donnell Stokes Jr

Honors Theses

Cancer immunotherapy has become an effective treatment in the toolbox of oncologists. Immunotherapy offers a less toxic alternative to standard cancer treatments such as chemotherapy and can have prolonged curative effects to decrease cancer recurrence. Today, many drugs and biological agents have been developed that target the immune system and elicit an antitumor/cancer response. These agents are known collectively as cancer immunotherapies. While immunotherapies have radically improved treatment outcomes for many cancer patients, there are drawbacks to using these treatments. Immunotherapy treatments have poor clinical responses in patients with tumors that lack immunogenicity. Some of the treatments also pose a …


Catechol-Containing Copolymers As An Active Ingredient For Denture Adhesives, Vincent Ying Wun Kong Apr 2021

Catechol-Containing Copolymers As An Active Ingredient For Denture Adhesives, Vincent Ying Wun Kong

Electronic Thesis and Dissertation Repository

Moisture inside the mouth adds challenge to making denture adhesives formulations. Some formulations have zinc to enhance adhesion on wet skin despite knowing the health hazards. Inspired by mussel foot proteins’ catechol unit’s strong underwater adhesion, nine catechol-containing copolymers (P1A-P3C) were synthesized by free radical polymerization of 3,4-dimethoxystyrene (3,4- DMS) with different styrene derivatives followed by deprotection. P1A-P3C were used to make Fn(P)-C-PBS denture adhesive formulations which had suitable shear stresses around ≥ 5 kPa satisfying ISO 10873. In-situ NMR studies of free radical polymerization of 3,4 - DMS and styrene derivatives allowed computation of their reactivity ratios showing all …


Extracellular Matrix-Derived Microcarriers As 3-D Cell Culture Platforms, Anna Kornmuller Apr 2021

Extracellular Matrix-Derived Microcarriers As 3-D Cell Culture Platforms, Anna Kornmuller

Electronic Thesis and Dissertation Repository

Recognizing the cell-instructive capacity of tissue-specific extracellular matrix (ECM) to direct cell attachment, proliferation and differentiation, there is a need for the development of in vitro cell culture models that reflect the complexity of the ECM to improve stem/progenitor cell expansion and lineage-commitment. This thesis focused on the development and characterization of ECM-derived microcarriers for the in vitro dynamic culture and expansion of stromal cells for cell therapy and tissue engineering applications.

To develop novel platforms for use in dynamic culture systems, initial work focused on applying electrospraying techniques to fabricate microcarriers from decellularized dermal tissue (DDT) and decellularized myocardial …