Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Towards The Rational Design And Application Of Polymers For Gene Therapy: Internalization And Intracellular Fate, Landon Alexander Mott Jan 2019

Towards The Rational Design And Application Of Polymers For Gene Therapy: Internalization And Intracellular Fate, Landon Alexander Mott

Theses and Dissertations--Chemical and Materials Engineering

Gene therapy is an approach for the treatment of acquired cancers, infectious disease, degenerative disease, and inherited genetic indications. Developments in the fields of immunotherapies and CRISPR/Cas9 genome editing are revitalizing the efforts to move gene therapy to the forefront of modern medicine. However, slow progress and poor clinical outcomes have plagued the field due to regulatory and safety concerns associated with the flagship delivery vector, the recombinant virus. Immunogenicity and poor transduction in certain cell types severely limits the utility of viruses as a delivery agent of nucleic acids. As a result, significant efforts are being made to develop …


Cell Surface Coatings For Mammalian Cell-Based Therapeutic Delivery, Pei-Jung Wu Jan 2019

Cell Surface Coatings For Mammalian Cell-Based Therapeutic Delivery, Pei-Jung Wu

Theses and Dissertations--Chemical and Materials Engineering

The cell plasma membrane is an interactive interface playing an important role in regulating cell-to-cell, cell-to-tissue contact, and cell-to-environment responses. This environment-responsive phospholipid layer consisting of multiple dynamically balanced macromolecules, such as membrane proteins, carbohydrate and lipids, is regarded as a promising platform for various surface engineering strategies. Through different chemical modification routes, we are able to incorporate various artificial materials into the cell surface for biomedical applications in small molecule and cellular therapeutics.

In this dissertation, we establish two different cell coating techniques for applications of cell-mediated drug delivery and the localization of cell-based therapies to specific tissues. The …


Pore-Confined Carriers And Biomolecules In Mesoporous Silica For Biomimetic Separation And Targeting, Shanshan Zhou Jan 2017

Pore-Confined Carriers And Biomolecules In Mesoporous Silica For Biomimetic Separation And Targeting, Shanshan Zhou

Theses and Dissertations--Chemical and Materials Engineering

Selectively permeable biological membranes composed of lipophilic barriers inspire the design of biomimetic carrier-mediated membranes for aqueous solute separation. This work imparts selective permeability to lipid-filled pores of silica thin film composite membranes using carrier molecules that reside in the lipophilic self-assemblies. The lipids confined inside the pores of silica are proven to be a more effective barrier than bilayers formed on the porous surface through vesicle fusion, which is critical for quantifying the function of an immobilized carrier. The ability of a lipophilic carrier embedded in the lipid bilayer to reversibly bind the target solute and transport it through …


Surface-Initiated Polymerizations For The Rapid Sorting Of Rare Cancer Cells, Jacob L. Lilly Jan 2016

Surface-Initiated Polymerizations For The Rapid Sorting Of Rare Cancer Cells, Jacob L. Lilly

Theses and Dissertations--Chemical and Materials Engineering

Cancer metastasis directly accounts for an estimated 90% of all cancer related deaths and is correlated with the presence of malignant cells in systemic circulation. This observed relationship has prompted efforts to develop a fluid biopsy, with the goal of detecting these rare cells in patient peripheral blood as surrogate markers for metastatic disease as a partial replacement or supplement to tissue biopsies. Numerous platforms have been designed, yet these have generally failed to support a reliable fluid biopsy due to poor performance parameters such as low throughput, low purity of enriched antigen positive cells, and insufficiently low detection thresholds …


Synthesis And Characterization Of Curcumin Polymer For Application In Radiation Induced Lung Damage, Mark C. Bailey Jan 2016

Synthesis And Characterization Of Curcumin Polymer For Application In Radiation Induced Lung Damage, Mark C. Bailey

Theses and Dissertations--Chemical and Materials Engineering

Radiotherapy is used as a primary treatment for many cancers, including lung cancer. Although radiotherapy has proven to be an effective cancer treatment, its use is heavily limited due to the peripheral toxicity to healthy tissue. In this work, the antioxidant, curcumin, was tested as a radioprotectant to reduce radiation damage to healthy cells. Curcumin has been limited in use due to its poor bioavailability. In order to avoid problems associated with free curcumin delivery, curcumin poly(beta-amino ester) (CPBAE) was synthesized.

The first study investigated the in vitro radioprotection effect of curcumin in HUVEC dosed with gamma radiation. Cells treated …


Bioactive Poly(Beta-Amino Ester) Biomaterials For Treatment Of Infection And Oxidative Stress, Andrew L. Lakes Jan 2016

Bioactive Poly(Beta-Amino Ester) Biomaterials For Treatment Of Infection And Oxidative Stress, Andrew L. Lakes

Theses and Dissertations--Chemical and Materials Engineering

Polymers have deep roots as drug delivery tools, and are widely used in clinical to private settings. Currently, however, numerous traditional therapies exist which may be improved through use of polymeric biomaterials. Through our work with infectious and oxidative stress disease prevention and treatment, we aimed to develop application driven, enhanced therapies utilizing new classes of polymers synthesized in-house. Applying biodegradable poly(β-amino ester) (PBAE) polymers, covalent-addition of bioactive substrates to these PBAEs avoided certain pitfalls of free-loaded and non-degradable drug delivery systems. Further, through variation of polymer ingredients and conditions, we were able to tune degradation rates, release profiles, cellular …


Synthesis And Characterization Of Antioxidant Conjugated Poly(Βeta-Amino Ester) Micro/Nanogels For The Suppression Of Oxidative Stress, Prachi Gupta Jan 2016

Synthesis And Characterization Of Antioxidant Conjugated Poly(Βeta-Amino Ester) Micro/Nanogels For The Suppression Of Oxidative Stress, Prachi Gupta

Theses and Dissertations--Chemical and Materials Engineering

Oxidative stress is a pathophysiological condition defined by an increased production of reactive oxygen species (ROS), which can result in the growth arrest of cells followed by cell disintegration or necrosis. A number of small molecule antioxidants (e.g. curcumin, quercetin and resveratrol) are capable of directly scavenging ROS, thereby short-circuiting the self-propagating oxidative stress state. However, poor solubility and rapid 1st pass metabolism results in overall low bioavailability and acts as a barrier for its use as a drug to suppress oxidative stress efficiently.

To overcome this limitation, these small molecule antioxidants were covalently conjugated into poly(β-amino ester) (PβAE) …


Inhalable Nanocomposites And Anticancer Agents For Cancer Therapy, Nathanael A. Stocke Jan 2015

Inhalable Nanocomposites And Anticancer Agents For Cancer Therapy, Nathanael A. Stocke

Theses and Dissertations--Chemical and Materials Engineering

Cancer is designated as the leading cause of mortality worldwide and lung cancer is responsible for nearly 30% of all cancer related deaths. Over the last few decades mortality rates have only marginally increased and rates of recurrence remain high. These factors, among others, suggest the need for more innovative treatment modalities in lung cancer therapy. Targeted pulmonary delivery is well established for treating pulmonary diseases such as asthma and provides a promising platform for lung cancer therapy. Increasing local deposition of anticancer agents (ACAs) and reducing systemic exposure of these toxic moieties could lead to better therapeutic outcomes and …


Biomimetic Oral Mucin From Polymer Micelle Networks, Sundar Prasanth Authimoolam Jan 2015

Biomimetic Oral Mucin From Polymer Micelle Networks, Sundar Prasanth Authimoolam

Theses and Dissertations--Chemical and Materials Engineering

Mucin networks are formed by the complexation of bottlebrush-like mucin glycoprotein with other small molecule glycoproteins. These glycoproteins create nanoscale strands that then arrange into a nanoporous mesh. These networks play an important role in ensuring surface hydration, lubricity and barrier protection. In order to understand the functional behavior in mucin networks, it is important to decouple their chemical and physical effects responsible for generating the fundamental property-function relationship. To achieve this goal, we propose to develop a synthetic biomimetic mucin using a layer-by-layer (LBL) deposition approach. In this work, a hierarchical 3-dimensional structures resembling natural mucin networks was generated …