Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Engineering

Evaluating Cellular Response Of Different Valve Interstitial Cell (Vic) Phenotypes To Angiotensin I, Smit Patel May 2021

Evaluating Cellular Response Of Different Valve Interstitial Cell (Vic) Phenotypes To Angiotensin I, Smit Patel

Biomedical Engineering Undergraduate Honors Theses

Calcific Aortic Valve Disease (CAVD), one of the leading causes of death in the United States, is characterized by diminished functioning and limited movement of the aortic valve (AV) due to increased thickening, disorganized extracellular matrix elastin fibers, increased collagen content, and abnormal deposition and formation of calcium nodules on the AV [1, 2]. There are two types of CAVD: i) Aortic valve sclerosis (AVS), in which patients suffer from tissue hardening, fibrosis, and early calcification, and ii) calcific aortic stenosis (CAS), representative by excessive calcification on the AV and reduced AV opening, are the two main forms of CAVD …


Developing Aligned Nerve Scaffolds In A 3d Type-I Collagen Gel, Gabriel David May 2021

Developing Aligned Nerve Scaffolds In A 3d Type-I Collagen Gel, Gabriel David

Biomedical Engineering Undergraduate Honors Theses

Despite significant progress in the field of peripheral nerve repair, clinical success is still limited, leaving millions to suffer from peripheral neuropathy with billions spent every year for treatment. Nerve repair methods that are capable of maximizing the regenerative properties of peripheral nerves are greatly desired in the field of medical science. This research aims to fill the gap between modern methods and the future of nerve repair by creating type-I collagen scaffolds with aligned degradation pores that will assist and nurture nerves growing through them. This is achieved by incorporating adipose stem cells into type-I collagen hydrogels and aligning …


Analysis Of Blood Purification Studies On Oxone Mediated Tempo-Oxidized Nano Cellulose Mixed-Matrix Membranes, Tony Roller May 2020

Analysis Of Blood Purification Studies On Oxone Mediated Tempo-Oxidized Nano Cellulose Mixed-Matrix Membranes, Tony Roller

Biomedical Engineering Undergraduate Honors Theses

End-stage renal disease (ESRD) is currently the ninth leading cause of death in the United States, and of the 661,00 Americans diagnosed with ESRD, approximately 468,800 were on hemodialysis in 2016. Hemodialysis refers to a technique where a machine combined with a membrane, often referred to as an artificial kidney, is used to clean blood by removing any waste such as urea, potassium, and other smaller waste products while preserving the concentrations and integrity of cells and proteins in the blood. It has been shown in artificial blood studies that cellulose nanomaterials, like TEMPO/Oxidized cellulose nanoparticles (TOCNs), can be integrated …


Characterization Of Oxone Mediated Tempo-Oxidized Nano Cellulose Mixed-Matrix Membranes During Ultrafiltration And Hemodialysis, Kristyn Robling May 2020

Characterization Of Oxone Mediated Tempo-Oxidized Nano Cellulose Mixed-Matrix Membranes During Ultrafiltration And Hemodialysis, Kristyn Robling

Biomedical Engineering Undergraduate Honors Theses

The ninth leading cause of death in the United States is kidney disease, and hemodialysis is the process most commonly prescribed for treatment. It utilizes a selectively permeable membrane filter to remove toxins such as urea from the blood and retain necessary protein levels. However, traditional filters, such as cellulose triacetate, used during dialysis can be inefficient in terms of separation performance and reduction of fouling. Recent exploration of nanoparticles has resulted in the creation of Oxone Mediated TEMPO-Oxidized Nano Cellulose which has properties that are believed to increase hydrophilicity, increase tensile capacity, decrease membrane resistance and lower fouling, making …


Investigating Virus Clearance Via Ph Inactivation During Biomanufacturing, Wenbo Xu May 2019

Investigating Virus Clearance Via Ph Inactivation During Biomanufacturing, Wenbo Xu

Biomedical Engineering Undergraduate Honors Theses

In the processing of biopharmaceuticals, viral clearance and viral safety are important for the development of monoclonal antibodies. Murine xenotropic leukemia virus (XMuLV) is one of the retroviruses, recommended by Food and Drug Administration (FDA) as a model virus for viral clearance via inactivation from therapeutics derived from Chinese hamster ovary cells (CHO). A robust and effective method was investigated to clear or inactivate endogenous viruses by low pH inactivation. The effects of different conductivity and inactivated time on XMuLV clearance was determined. Acetate buffer was prepared with different conductivity, and 2% XMuLV was spiked into acetate buffer. XMuLV virus …


Effect Of Polymer Composition Of Injectable Hydrogels On Programmable Release Of Methylene Blue, Mary Brandecker May 2019

Effect Of Polymer Composition Of Injectable Hydrogels On Programmable Release Of Methylene Blue, Mary Brandecker

Biomedical Engineering Undergraduate Honors Theses

Temperature sensitive hydrogels have been used as injectable hydrogels because the polymer solutions can be liquid at room temperature and gel at body temperature. Injectable hydrogels have been used in biomedical applications to deliver drugs and other small molecules throughout the body. Methylene Blue was used as the drug in this study for its antioxidant and neuroprotective properties. PluronicⓇ F127 (PF127) is a copolymer consisting of repeating units of polyethylene oxide and polypropylene oxide in the form PEO-PPO-PEO. PF127 in solution is a temperature sensitive hydrogel that transitions to a gel at body temperature at specific polymer compositions. A standard …


Design Of Microporous Membranes For The Development Of Brain-On-Chip Devices, Andre Figueroa Milla May 2019

Design Of Microporous Membranes For The Development Of Brain-On-Chip Devices, Andre Figueroa Milla

Biomedical Engineering Undergraduate Honors Theses

Traumatic brain injuries (TBIs) are a major global health concern that have an economic impact of $60 billion in the United States in related costs annually. Developing drugs for TBI treatment is an approach that currently faces limitations involving the permeability of the blood-brain barrier (BBB). The BBB naturally limits molecules from reaching the brain as a protective mechanism against disease, acting as a barrier during drug delivery. Understanding the BBB mechanically and chemically following a TBI could potentially assist future studies to alleviate the symptoms and long-term effects of TBI by pharmaceuticals. The Mechanobiology and Soft Materials Laboratory (MSML) …


Analysis Of Biological Response To Ecm Hydrogel Injection, Grady Dunlap May 2018

Analysis Of Biological Response To Ecm Hydrogel Injection, Grady Dunlap

Biomedical Engineering Undergraduate Honors Theses

Abstract

Under normal circumstances, skeletal muscle possesses the capacity to regenerate and heal via inflammatory and myogenic pathways. In cases of severe tissue loss or certain diseases, this capacity is lost, often resulting in loss of tissue function. Extracellular matrix (ECM), the protein scaffold which houses cells in physiological tissue, has been shown to have structural and chemical properties which influence cell migration and phenotype. This results in ECM’s capacity to encourage a regenerative response when implanted into severely damaged skeletal muscle. Additional advantages are apparent when an ECM scaffold is digested into a hydrogel, namely less invasive implantation via …


Chitosan As An Antiviral, Tayler Pauls May 2016

Chitosan As An Antiviral, Tayler Pauls

Biomedical Engineering Undergraduate Honors Theses

There is no broad-based antiviral medication available today; there are specific antivirals, for example, the antiretroviral for HIV. However, these specific antivirals are not available in each country and can be problematic for specific patients. Chitosan is proposed as a possible broad-based antiviral, which has already demonstrated antibacterial properties, antiviral properties in plants, is used for wound healing and as a hydrogel among other medical applications. The methods used are transfection of NIH-3T3 cells with GFP-adenovirus with 0.1%, 0.5%, and 1% chitosan added to virus prior to transfection. Fluorescence microscopy and flow cytometry data has validated that the use of …


Investigating The Mechanical Behaviors Of Organic/Inorganic Composite Bone Scaffolds, Parker Davidson May 2016

Investigating The Mechanical Behaviors Of Organic/Inorganic Composite Bone Scaffolds, Parker Davidson

Biomedical Engineering Undergraduate Honors Theses

The regeneration of bone over a large area cannot occur without a structure for the bone cells to bind and divide. The use of an organic/inorganic composite bone scaffold appears to be a promising alternative to the current clinical standard of bone grafting. Bone grafting is very limited, in that the size and shape of the area are hard to replicate and the use of donor tissue can trigger an immunologic response resulting in rejection of the bone tissue. This study experimented with composite bone scaffolds which can be made to fit the shape of the area in which bone …


Customization Of Titanate Nanofiber Bioscaffolds, Jared Hopkins May 2016

Customization Of Titanate Nanofiber Bioscaffolds, Jared Hopkins

Biomedical Engineering Undergraduate Honors Theses

In the field of orthopedic devices implant loosening is a major issue resulting in the majority of device failures. These failures result in the need for costly secondary procedures. To reduce device loosening an improved method of tissue anchoring is required. A previously studied titanate nanofiber bioscaffold has been shown to be safely implantable and to contribute to the differentiation of mesenchymal stem cells to osteocytes. Through the customization of both physical and chemical characteristics this titanate nanofiber bioscaffold was fabricated as a potential means to enhance tissue anchoring for use with orthopedic devices. This customization was enabled by acoustic …


Isolation Of Metallic Single-Walled Carbon Nanotubes For Electrically Conductive Tissue Engineering Scaffolds, Jakob Hockman May 2016

Isolation Of Metallic Single-Walled Carbon Nanotubes For Electrically Conductive Tissue Engineering Scaffolds, Jakob Hockman

Biomedical Engineering Undergraduate Honors Theses

Metallic single-walled carbon nanotubes (m-SWNTs) were separated from pristine SWNTs using affinity chromatography for use in electrically conductive tissue engineering scaffolds. Approximately one third of SWNTs have metallic properties. Separations were achieved using a protocol modified from Liu & coworkers (2011) in order to improve the method for cell culture environments. Samples enriched in m-SWNTs were isolated and characterized. However, challenges still remain for the complete separation of m-SWNTs from their semiconducting counterpart (s-SWNTs) using this protocol. Approaches to improve separation and reduce the difficulties associated with processing the nanotubes were suggested. One of the ultimate destinations of these nanotubes …