Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Novel Approaches For Enhancing Cell Survival And Function In Vivo, Ou Wang Dec 2021

Novel Approaches For Enhancing Cell Survival And Function In Vivo, Ou Wang

Department of Chemical and Biomolecular Engineering: Theses and Student Research

FDA has approved several cell-based therapeutics and hundreds of cell therapy clinical trials are ongoing. Cells will be a significant type of medicine after small molecule and protein drugs. However, several obstacles need to be addressed to achieve the widespread use of cellular therapeutics. The first challenge is the low efficacy of cell transplantation due to low retention, survival, integration, and function of cells in vivo. The second challenge is producing a massive number of cells for clinical treatment with cost-effectively and reproducibly technologies.

In this thesis, we proposed and investigated two approaches to address these challenges. To begin …


Development And Characterization Of A Decellularized Neuroinhibitory Scaffold Containing Matrix Bound Nanovesicles, Logan Piening Dec 2021

Development And Characterization Of A Decellularized Neuroinhibitory Scaffold Containing Matrix Bound Nanovesicles, Logan Piening

Department of Biological Systems Engineering: Dissertations and Theses

Chronic low back pain (LBP) is a leading cause of disability but treatments for LBP are limited. Degeneration of the intervertebral disc leads to loss of neuroinhibitory sulfated glycosaminoglycans (sGAGs) which allows nerves from dorsal root ganglia (DRG) to grow into the core of the disc, leading to pain. Current treatments for LBP involve drugs that do not target the source of the pain and lack long term efficacy or use invasive surgeries with high complication rates. Treatment with a decellularized tissue scaffold that contains neuroinhibitory components may inhibit nerve growth and prevent disc-associated LBP. Here, a decellularized nucleus pulposus …


A Single Cell Pair Mechanical Interrogation Platform To Study Cell-Cell Adhesion Mechanics, Amir Monemianesfahani Aug 2021

A Single Cell Pair Mechanical Interrogation Platform To Study Cell-Cell Adhesion Mechanics, Amir Monemianesfahani

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Cell-cell adhesion complexes are macromolecular adhesive organelles that integrate cells into tissues. Perturbations of the cell-cell adhesion structure or relatedmechanotransduction pathways lead to pathological conditions such as skin and heart diseases, arthritis, and cancer. Mechanical stretching has been used to stimulate the mechanotransduction process originating from the cell-cell adhesion and cell-extracellular matrix (ECM) complexes. The current techniques, however, have limitations on their ability to measure the cell-cell adhesion force directly and quantitatively. These methods use a monolayer of cells, which makes it impossible to quantify the forces within a single cell-cell adhesion complex. Other methods using single cells or cell …


Efficient Polyhydroxyalkanoate Production By Rhodopseudomonas Palustris From Lignocellulosic Biomass, Brandi Brown Jul 2021

Efficient Polyhydroxyalkanoate Production By Rhodopseudomonas Palustris From Lignocellulosic Biomass, Brandi Brown

Department of Biological Systems Engineering: Dissertations and Theses

Polyhydroxyalkanoates (PHAs) are biopolymers produced by bacteria with the potential to replace conventional plastics. However, the relatively high production costs of PHAs are keeping them from market acceptance, with approximately half of the production costs derived from the feedstock. Thus, engineering a microbe for PHA production from cheaper and renewable carbon sources is necessary to promote the valorization of PHAs. Lignocellulosic biomass is considered to be one of the most economic carbon sources in the world, and is thus an attractive candidate for cheaper production of bioplastics. Rhodopseudomonas palustris CGA009 is a metabolically robust bacterium capable of catabolizing lignin breakdown …