Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Engineering

The Biological Problems Of Space Travel, Madilyn R. Reid Dec 2021

The Biological Problems Of Space Travel, Madilyn R. Reid

Ideas: Exhibit Catalog for the Honors College Visiting Scholars Series

Colonel Richard Covey is a distinguished former astronaut who has logged over 646 hours of space travel. Over the years, National Aeronautics and Space Administration (NASA) and research scientists in the aerospace industry have become increasingly concerned about the biological complications of space travel. This article goes in-depth on what is already known about the biological problems of being in space and potential solutions to remedy the complications.


Community-Scale Water Treatment Systems In The Dominican Republic, Jonathan Racey, Annabelle Papai, Elise Fischer, Becca Johnson Dec 2018

Community-Scale Water Treatment Systems In The Dominican Republic, Jonathan Racey, Annabelle Papai, Elise Fischer, Becca Johnson

Engagement & Service-Learning Summit

Engagement and Service-Learning Summit: Reciprocal and Sustainable Partnerships


Water Supply In Developing Countries: Student Experiences In The Dominican Republic, Albert Alwang, Margaret Busse, Audrey Caprio, Marieke Fenton, Jason Hawes, Andrew Kanach, Autumn Mcelfresh-Sutton Oct 2017

Water Supply In Developing Countries: Student Experiences In The Dominican Republic, Albert Alwang, Margaret Busse, Audrey Caprio, Marieke Fenton, Jason Hawes, Andrew Kanach, Autumn Mcelfresh-Sutton

Purdue Journal of Service-Learning and International Engagement

In 2010, the United Nations established access to safe drinking water as a basic human right; however, many areas around the globe still lack access. The interdisciplinary service-learning course “Water Supply in Developing Countries” was established at Purdue in 2012 to address the complex issue of water insecurity around the world. Over the past five years, the course has produced teams involving students from nursing, engineering, agricultural economics, biology, and food science working together to develop sustainable, community-scale drinking water treatment systems. In partnership with Aqua Clara International, the student team in 2017 established a drinking water treatment system at …


Is Metabolism Goal-Directed? Investigating The Validity Of Modeling Biological Systems With Cybernetic Control Via Omic Data, Frank T. Devilbiss Apr 2016

Is Metabolism Goal-Directed? Investigating The Validity Of Modeling Biological Systems With Cybernetic Control Via Omic Data, Frank T. Devilbiss

Open Access Dissertations

Cybernetic models are uniquely juxtaposed to other metabolic modeling frameworks in that they describe the time-dependent regulation of cellular reactions in terms of dynamic "metabolic goals." This approach contrasts starkly with purely mechanistic descriptions of metabolic regulation which seek to explain metabolic processes in high resolution — a clearly daunting undertaking. Over a span of three decades, cybernetic models have been used to predict metabolic phenomena ranging from resource consumption in mixed-substrate environments to intracellular reaction fluxes of intricate metabolic networks. While the cybernetic approach has been validated in its utility for the prediction of metabolic phenomena, its central feature, …


Influence Of The 3d Microenvironment On Glioblastoma Migration And Drug Response, Ruth Marisol Herrera Perez Apr 2016

Influence Of The 3d Microenvironment On Glioblastoma Migration And Drug Response, Ruth Marisol Herrera Perez

Open Access Dissertations

Glioblastoma (GBM) is a highly invasive brain cancer characterized by poor prognosis. Despite significant efforts by the basic and clinical research community our understanding of GBM progression and recurrence has been incremental. Improvements in therapeutic response have been dismal, and GBM continues to be the deadliest tumor of the central nervous system, with patient average survival rate of 12 months. Synergistic relationships that the tumor cells establish with the brain microenvironment have been proven fundamental for successful tumor progression and maintenance. Yet, many in vitro GBM studies are performed in formats that fail to recapitulate the most essential component of …


Viewing The Extracellular Matrix: An Imaging Method For Tissue Engineering, Michael Drakopoulos, Sarah Calve Aug 2015

Viewing The Extracellular Matrix: An Imaging Method For Tissue Engineering, Michael Drakopoulos, Sarah Calve

The Summer Undergraduate Research Fellowship (SURF) Symposium

The field of regenerative medicine seeks to create replacement tissues and organs, both to repair deficiencies in biological function and to treat structural damage caused by injury. Scaffoldings mimicking extracellular matrix (ECM), the structure to which cells attach to form tissues, have been developed from synthetic polymers and also been prepared by decellularizing adult tissue. However, the structure of ECM undergoes significant remodeling during natural tissue repair, suggesting that ECM-replacement constructs that mirror developing tissues may promote better regeneration than those modeled on adult tissues. This work investigated the effectiveness of a method of viewing the extracellular matrix of developing …


A Novel Synthetic Yeast For Enzymatic Biodigester Pretreatment, Tianyu Tan, Mark S. Aronson, Arren Liu, Jill H. Osterhus, Melissa Robins, Suraj Mohan, Erich Leazer, Bowman Clark, Alexa Petrucciani, Katherine Lowery, James Welch, Casey Martin, Helena Lysandrou, Michael E. Scharf, Jenna Rickus Aug 2015

A Novel Synthetic Yeast For Enzymatic Biodigester Pretreatment, Tianyu Tan, Mark S. Aronson, Arren Liu, Jill H. Osterhus, Melissa Robins, Suraj Mohan, Erich Leazer, Bowman Clark, Alexa Petrucciani, Katherine Lowery, James Welch, Casey Martin, Helena Lysandrou, Michael E. Scharf, Jenna Rickus

The Summer Undergraduate Research Fellowship (SURF) Symposium

Lignin, a complex organic polymer, is a major roadblock to the efficiency of biofuel conversion as it both physically blocks carbohydrate substrates and poisons biomass degrading enzymes, even if broken down to monomer units. A pretreatment process is often applied to separate the lignin from biomass prior to biofuel conversion. However, contemporary methods of pretreatment require large amounts of energy, which may be economically uncompelling or unfeasible. Taking inspiration from several genes that have been isolated from termites and fungi which translate to enzymes that degrade lignin, we want to establish a novel “enzymatic pretreatment” system where microbes secrete these …


Mass Transfer Of Large Molecules Through Collagen And Collagen-Silica Hybrid Membranes, Pedro Jofre Lora Apr 2015

Mass Transfer Of Large Molecules Through Collagen And Collagen-Silica Hybrid Membranes, Pedro Jofre Lora

Open Access Theses

Diabetes is a growing concern in the United States and around the world that must be addressed through new treatment options. Current standard treatment options of diabetes are limiting and have tremendous impacts on patient's lives. Emerging therapies, such as the implantation of encapsulated islets, are promising treatment options, but have not yet materialized due to unsolved problems with material properties. Hybrid silica-collagen membranes address some of these unsolved problems and are a promising material for cell encapsulation. However, the mass transfer properties of large molecules, such as insulin, TNF-α, IL1β, and other important proteins in the etiology of diabetes, …


Acrolein As A Novel Therapeutic Target For Spinal Cord Injury Induced Neuropathic Pain, Jonghyuck Park Oct 2014

Acrolein As A Novel Therapeutic Target For Spinal Cord Injury Induced Neuropathic Pain, Jonghyuck Park

Open Access Dissertations

Despite years of research, post-spinal cord injury (SCI) chronic neuropathic pain remains refractory to treatment and drastically impairs quality of life for SCI victims beyond paralysis. Although inflammation and free radicals contribute to neuropathic pain in SCI, the mechanism is not completely clear. We have recently demonstrated that acrolein, a product and catalyst of lipid peroxidation, induces a vicious cycle of oxidative stress, amplifying its effects and perpetuating oxidative stress and inflammation. In the current study, we have confirmed that acrolein is elevated significantly at least two weeks post-SCI which coincides with the emergence of hyperalgesia (mechanical, cold and thermal). …


Role Of Group Ii Metabotropic Glutamate Receptor Subtype 2 (Mglur2) In Appetitive And Consummatory Aspects Of Ethanol Reinforcement, Kyle Allyson Windisch Oct 2014

Role Of Group Ii Metabotropic Glutamate Receptor Subtype 2 (Mglur2) In Appetitive And Consummatory Aspects Of Ethanol Reinforcement, Kyle Allyson Windisch

Open Access Dissertations

Background: Group II metabotropic glutamate receptors (mGluR2/3) are predominately presynaptically located Gi/o coupled receptors that are highly expressed in the cortex, nucleus accumbens, amygdala, and hippocampus. Previous studies suggest that group II mGluRs are involved in regulating ethanol (EtOH) consumption and seeking following extinction (Backstrom and Hyytia, 2005; Kufahl, et al., 2011). The sipper tube model, which allows for procedural separation of seeking and consumption, was used to further clarify the role of mGluR2/3 in EtOH-seeking and consumption. The non-selective group II mGluR agonist LY379268 (LY37) and selective mGluR2 positive allosteric modulator (PAM) BINA were used to determine the …


Nano-Engineered Polymers In Drug Delivery: Potential Approaches For Attenuation Of Secondary Injury After Spinal Cord Trauma, Wen Gao Oct 2014

Nano-Engineered Polymers In Drug Delivery: Potential Approaches For Attenuation Of Secondary Injury After Spinal Cord Trauma, Wen Gao

Open Access Dissertations

Secondary injury elicits a complex series of pathophysiological events after the primary spinal cord trauma and even after its implantation treatment for neural functional recovery. These secondary injuries include an up-regulation of glial cells associated reactive oxygen species, nitrogen species, and reactive astrogliosis, and they can result in various levels of cellular and tissue damage. The inhibition of them has been proved to lead to functional recovery of the spinal cord. In this study, we concentrated on developing polymers and nano-techniques based drug delivery strategies to eliminate these secondary injuries. ^ To maintain and improve the performance of the implants …


Intranuclear Strain Measured By Iterative Warping In Cells Under Mechanical And Osmotic Stress, Jonathan T Henderson Oct 2014

Intranuclear Strain Measured By Iterative Warping In Cells Under Mechanical And Osmotic Stress, Jonathan T Henderson

Open Access Dissertations

The nucleus is a membrane bound organelle and regulation center for gene expression in the cell. Mechanical forces transfer to the nucleus directly and indirectly through specific cellular cytoskeletal structures and pathways. There is increasing evidence that the transferred forces to the nucleus orchestrate gene expression activity. Methods to characterize nuclear mechanics typically study isolated cells or cells embedded in 3D gel matrices. Often report only aspect ratio and volume changes, measures that oversimplify the inherent complexity of internal strain patterns. This presents technical challenges to simultaneously observe small scale nuclear mechanics and gene expression levels inside the nuclei of …


Developing A Practical Wireless Monitoring Solution For A Size-Constrained, Low-Power, Biomechanical, Sports Telemetry System, Jeffery Ray King Oct 2014

Developing A Practical Wireless Monitoring Solution For A Size-Constrained, Low-Power, Biomechanical, Sports Telemetry System, Jeffery Ray King

Open Access Theses

As sport-related concussions become more prevalent, the ability to quickly and reliably assess brain injury risk is increasingly essential. Commercially-available systems exist with the goal of assessing the risk of traumatic brain injury in athletes in real-time. These systems utilize a pre-determined acceleration threshold, discarding all captured information below this arbitrary threshold. The use of an event-based model to assess the risk of traumatic brain injury has been shown to be inadequate. Therefore, these systems falsely promote "accurate" real-time communication of risk. Research conducted by the Purdue Neurotrauma Group (PNG) seeks to advance the field by developing a biomechanical sports …


Detection Of Foodborne Pathogens By Micro-Filtration Using A Continuous Cell Concentrator Device, Klaire E. Jeffries, Eduardo Ximenes, Michael R. Ladisch Oct 2013

Detection Of Foodborne Pathogens By Micro-Filtration Using A Continuous Cell Concentrator Device, Klaire E. Jeffries, Eduardo Ximenes, Michael R. Ladisch

The Summer Undergraduate Research Fellowship (SURF) Symposium

Protecting consumers from foodborne illness is an important health concern facing the food industry today. An important deficiency exposed by foodborne illness is the inability to track contaminated food back to the source in a timely manner. Although there are established methods that detect bacterial pathogen contamination, they are limited in distinguishing viable bacteria reliably and quickly. Currently, food pathogen testing requires lengthy culture steps, which many times are delayed even longer due to the lack of in-house testing labs. Typically, two to three days elapses between when the food is sampled and the test results are available. This study …


Synthesis And Characterization Of Nucleic Acid-Functionalized Nanomaterials, Brianna S. Carroll, Jong Hyun Choi Oct 2013

Synthesis And Characterization Of Nucleic Acid-Functionalized Nanomaterials, Brianna S. Carroll, Jong Hyun Choi

The Summer Undergraduate Research Fellowship (SURF) Symposium

Motor proteins such as kinesin move along microtubules in order to transport cellular cargos throughout the cell by obtaining energy from RNA hydrolysis which allows the cell to complete the tasks needed to stay alive. In this work, we developed synthetic molecular motors using DNA enzymes (DNAzyme) and fluorescent nanomaterials which mimic the functions and structures of motor proteins. A DNAzyme-capped CdS nanoparticle and a RNA-functionalized single-walled carbon nanotube (SWCNT) were used as a walker and a track in the motor platform, respectively. As a walking mechanism, the DNAzyme cleaved the RNA substrates in the presence of metal cations. The …