Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Engineering

Development Of Nucleic Acid Diagnostics For Targeted And Non-Targeted Biosensing, Christopher William Smith Dec 2022

Development Of Nucleic Acid Diagnostics For Targeted And Non-Targeted Biosensing, Christopher William Smith

Legacy Theses & Dissertations (2009 - 2024)

The field of nucleic acid technology is rapidly expanding with new impactful discoveriesbeing made each year. Starting from the discovery of the double-helix structure, cloning, gene editing, polymerase chain reaction (PCR), CRISPR technology, and even the late mRNA vaccines; nucleic acid technology is at the forefront of improving medicine. Nucleic acid technology is extremely versatile due to its easy programmability, automated cheap synthesis, and even its catalog for numerous chemical modifications that can be used to alter structure stability. For example, the number of permutations that can be made with DNA just by altering the code for adenine (A), cytosine …


Development Of Chemical Methods For Oligonucleotide Purification, Paramagnetic Labeling And Synthesis Of Dna-Based Advanced Materials, Muhan He Jan 2021

Development Of Chemical Methods For Oligonucleotide Purification, Paramagnetic Labeling And Synthesis Of Dna-Based Advanced Materials, Muhan He

Legacy Theses & Dissertations (2009 - 2024)

This thesis describes a chemical method for alternative oligonucleotide purification that is non-chromatographic and gel-free and allows to routinely synthesize and purify long functional RNA strands. The purification of long RNAs is based on the bio-orthogonal inverse electron demand Diels-Alder (IEDDA) chemistry between trans-cyclooctene (TCO) and tetrazine (Tz). Target oligonucleotide strands are selectively tagged with Tz and can be captured and purified from the failure sequences with immobilized TCO. RNA strands are synthesized on solid support through a photolabile linker to avoid the loss of Tz tag. Purity of the isolated oligonucleotides was evaluated using gel electrophoresis, HPLC and mass …


Development Of Dual Functional Dna/Rna Nanostructures For Drug Delivery, Vibhav Amit Valsangkar Jan 2020

Development Of Dual Functional Dna/Rna Nanostructures For Drug Delivery, Vibhav Amit Valsangkar

Legacy Theses & Dissertations (2009 - 2024)

In addition to the traditional biochemical functions, DNA and RNA have been increasingly studied as building blocks for the formation of various 2D and 3D nanostructures. DNA has emerged as a versatile building block for programmable self-assembly. DNA-based nanostructures have been widely applied in biosensing, bioimaging, drug delivery, molecular computation and macromolecular scaffolding. A variety of strategies have been developed to functionalize these nanostructures. The major advantage is that DNA is a very stable molecule and its base-pairing properties can be easily utilized to control and program the formation of desired nanostructures. In addition, some of these DNA/RNA nanostructures have …


Dna Functionalized Nanoparticles In Nanobiosensor And Sensor Array Development For Molecular Diagnostics And In Vitro Identification Of Biomolecules, Mustafa Salih Hizir Jan 2018

Dna Functionalized Nanoparticles In Nanobiosensor And Sensor Array Development For Molecular Diagnostics And In Vitro Identification Of Biomolecules, Mustafa Salih Hizir

Legacy Theses & Dissertations (2009 - 2024)

Nucleic acid technology along with vast variety of nanomaterials has demonstrated a great potential in many applications from biosensing studies to molecular diagnostics, from biomedical and bioanalytical research to environmental analysis. Especially short single stranded (ss) DNA molecules, called oligonucleotides, are extraordinary biopolymers featuring diverse functionality on the nanoparticles thanks to their high degree of programmability, target-specific binding or cleavage, molecular recognition ability, structure-switching capability, and unique interactions at the bio-nano interfaces. Among those, there have been many biosensing applications utilizing ss DNAs and numerous nanomaterials through various detection techniques such as fluorometric, colorimetric or electrochemical methods. Although many groundbreaking …


Genetically Engineered Polypeptides As Biomimetic Light Harvesting Optical Antenna, Jason P. Seeley Jan 2018

Genetically Engineered Polypeptides As Biomimetic Light Harvesting Optical Antenna, Jason P. Seeley

Legacy Theses & Dissertations (2009 - 2024)

Natural resources useful for the generation of energy are limited. The development of efficient materials capable of utilizing the abundant free solar radiation is of considerable interest. Utilization of otherwise wasted energy sources, including solar radiation, is a progressive step in the quest for sustainable energy. Solar radiation incident upon the earth’s surface exceeds current energy requirements and motivates scientists to investigate and develop functional devices and nanomaterials including light harvesting complexes (LHC) capable of capturing solar radiation for energy conversion and storage.


Technology Development For Detection Of Circulating Disease Biomarkers From Liquid Biopsies Using Multifunctional Nanomaterials, Mustafa Balcioglu Jan 2018

Technology Development For Detection Of Circulating Disease Biomarkers From Liquid Biopsies Using Multifunctional Nanomaterials, Mustafa Balcioglu

Legacy Theses & Dissertations (2009 - 2024)

Despite the advance health care, devastating health conditions such as cancer and infectious diseases that affect populations worldwide are too often not diagnosed until morbid symptoms become apparent in the late phase. Obtaining an early and accurate diagnosis that reveal a hidden lethal threat before the disease becomes complicated may dramatically reduce the severity of its impact on the patient’s life and increase the probability of survival. For example, in the case of ovarian cancer, which is the fifth most common malignancy and the fifth leading cause of cancer mortality in women in the US, the 5-year relative survival is …


Novel Approaches To Mitigating Bacterial Biofilm Formation And Intercellular Communication, Stephen Kasper Jan 2017

Novel Approaches To Mitigating Bacterial Biofilm Formation And Intercellular Communication, Stephen Kasper

Legacy Theses & Dissertations (2009 - 2024)

Long thought of as solitary single-cell organisms, it is now widely accepted that bacteria can act and cooperate as social organisms. Phenomena such as biofilm formation and quorum sensing (QS) are two intimately intertwined cooperative behaviors that significantly contribute to the pathogenesis of many bacteria. Biofilms are surface associated communities of bacteria encased in a secreted extracellular matrix, which provides several advantages over an individualized lifestyle, such as increased protection from antimicrobial agents as well as enhanced opportunity for the exchange of genetic material. Bacterial QS is a system of population-based communication through the production, sensing, and response to chemical …


Multifunctional Nanomaterials Utilizing Hybridization Chain Reaction For Molecular Diagnostics And Bioanalytical Applications, Md Muhit Rana Jan 2017

Multifunctional Nanomaterials Utilizing Hybridization Chain Reaction For Molecular Diagnostics And Bioanalytical Applications, Md Muhit Rana

Legacy Theses & Dissertations (2009 - 2024)

DNA nanotechnology has shown great promise in molecular diagnostic, bioanalytical and biomedical applications. The great challenge of detecting target analytes, biomarkers and small molecules, in molecular diagnostics is low yield sensitivity. To address this challenge, different nanomaterials have been used for a long time and to date there is no such cost-effective bioanalytical technique which can detect these target biomarkers (DNA, RNA, circulating DNA/miRNA) or environmental heavy metal ions (Hg2+ and Ag+) in a cost-effective and efficient manner.


Profiling Resistance To P450-Activated Food Carcinogens Using Toxicogenomic Approaches In Budding Yeast, Nicholas Stjohn Jan 2017

Profiling Resistance To P450-Activated Food Carcinogens Using Toxicogenomic Approaches In Budding Yeast, Nicholas Stjohn

Legacy Theses & Dissertations (2009 - 2024)

The human response to environmental carcinogens, some of which require metabolic activation, is highly variable. Factors such as environment, lifestyle, and genetics all influence the rates of exposure to and ultimate bioactivation of these compounds. Genetic factors include mutations to cell-cycle regulation, cell proliferation, and DNA repair genes; however, epidemiological studies may lack significance due to inadequate patient numbers. We used budding yeast as a model organism to determine genetic susceptibility to food-associated carcinogens, including aflatoxin (AFB1) and heterocyclic aromatic amines (HAAs). Budding yeast does not contain P450s that activate these compounds, so expression vectors were induced that contain human …


Investigation Of Enzymatically Synthesized Glycogen As A Novel Nanodendrimer For Therapeutic Delivery, Sarah Ann Engelberth Jan 2016

Investigation Of Enzymatically Synthesized Glycogen As A Novel Nanodendrimer For Therapeutic Delivery, Sarah Ann Engelberth

Legacy Theses & Dissertations (2009 - 2024)

The field of medicinal chemistry is ever expanding, designing and discovering new therapeutic strategies. Oftentimes, it is challenging for these therapeutics to undergo clinical translation due to ineffective administration or unwanted toxicity in vivo. As such, drug delivery vehicles are designed to overcome these hurdles, allowing for delivery to the site of action by improving biodistribution, protecting therapeutic cargo, and decreasing toxicity. The work presented here aims to investigate a naturally-derived carbohydrate nanodendrimer, enzymatically synthesized glycogen (ESG) for drug delivery. This nontoxic, highly-branched, glucose-based structure has interior void volumes to allow for cargo encapsulation as well as a large density …


Restriction And Characterization Of Human Breast Cancer Using A Three-Dimensional Embryonic Stem Cell Model, Bridget Mooney Jan 2016

Restriction And Characterization Of Human Breast Cancer Using A Three-Dimensional Embryonic Stem Cell Model, Bridget Mooney

Legacy Theses & Dissertations (2009 - 2024)

Human breast cancer is currently the highest diagnosed form of cancer and the second leading cause of cancer-related deaths in American women. Triple negative breast cancer is of the basal subtype and displays the worst prognosis owing to its highly metastatic properties. Current treatments focused on eradicating breast tumors in lieu of or following local therapy include chemotherapy, hormonal therapy, and targeted therapy. Hormonal therapy is not an option for triple negative breast cancer as it does not contain hormone receptors and there are currently no approved biological targeted therapies. Chemotherapy has proven unsuccessful because triple negative breast cancer is …


The Gammaturc Nanomachine Mechanism And Future Applications, Timothy Riehlman Jan 2016

The Gammaturc Nanomachine Mechanism And Future Applications, Timothy Riehlman

Legacy Theses & Dissertations (2009 - 2024)

The complexity and precision of the eukaryotic cell’s cytoskeletal network is unrivaled by any man-made systems, perfected by billions of years of evolution, mastering elegant processes of self-assembly, error correction, and self-repair. Understanding the capabilities of these networks will have important and far reaching applications in human medicine by aiding our understanding of developmental processes, cellular division, and disease mechanisms, and through biomimicry will provide insights for biosynthetic manufacturing at the nanoscale and across scales. My research utilizes cross species techniques from Human to the model organism of Fission Yeast to investigate the structure and mechanisms of the g-tubulin ring …


Ph Regulation And The Assessment Of Renal Injury Biomarkers In A Warm Perfusion Renal Allograft Preservation System, Aaron Meyer Jan 2014

Ph Regulation And The Assessment Of Renal Injury Biomarkers In A Warm Perfusion Renal Allograft Preservation System, Aaron Meyer

Legacy Theses & Dissertations (2009 - 2024)

A shortage of viable kidneys available for transplantation exists today, as the number of individuals waiting for a kidney transplant continues to grow while the number of kidneys available each year for transplantation has remained stagnant. The development of technology that will allow for transplantation of organs that currently may be considered too damaged for transplant will provide access to a large number of donors who have experienced traumatic injury deaths resulting in loss of cardiac function. These potential donors account for the majority of all traumatic injury deaths in intensive care units, however their organs have experienced a degree …