Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemical and Biomolecular Engineering

Biorefinery

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Challenges To Levulinic Acid And Humins Valuation In The Sugarcane Bagasse Biorefinery Concept, Emília Savioli Lopes, Jean Felipe Leal Silva, Elmer Ccopa Rivera, Alana Petrina Gomes, Melina Savioli Lopes, Rubens Maciel Filho, Laura Plazas Tovar Sep 2020

Challenges To Levulinic Acid And Humins Valuation In The Sugarcane Bagasse Biorefinery Concept, Emília Savioli Lopes, Jean Felipe Leal Silva, Elmer Ccopa Rivera, Alana Petrina Gomes, Melina Savioli Lopes, Rubens Maciel Filho, Laura Plazas Tovar

Faculty Publications

© 2020, Springer Science+Business Media, LLC, part of Springer Nature. Levulinic acid (LA) is currently one of the most promising chemicals derived from biomass. However, its large-scale production is hampered by the challenges in biomass hydrolysis and the poor selectivity due to the formation of humins (HUs). This study addresses these challenges using the biorefinery concept of biomass fractionation. A three-step process (pretreatment, delignification, and acid-catalyzed conversion) was optimized to produce LA from SCB considering the yield (YLA), efficiency (ELA), and concentration of LA (CLA) as functions of temperature, reaction time, acid concentration, and solids loading. By means of a …


Simulating Microbial Electrolysis For Renewable Hydrogen Production Integrated With Separation In Biorefinery, Christian James Wilson Aug 2017

Simulating Microbial Electrolysis For Renewable Hydrogen Production Integrated With Separation In Biorefinery, Christian James Wilson

Masters Theses

Biomass conversion to hydrocarbon fuels requires significant amounts of hydrogen. Fossil resources typically supply hydrogen via steam reforming. A new technology called microbial electrolysis cells (MECs) has emerged which can generate hydrogen from organic sources and biomass. The thermochemical route to fuels via pyrolysis generates bio-oil aqueous phase (BOAP) which can be used to make hydrogen. A process engineering and economic analysis of this technology was conducted for application in biorefineries of the future. Steam methane reforming, bio-oil separation and microbial electrolysis unit operations were simulated in Aspen Plus to derive the mass and energy balance for conversion of biomass. …


Lignin Maximization: Analyzing The Impact Of Different Feedstocks And Feedstock Ratios Using Organosolv Fractionation, Marc Banholzer Dec 2016

Lignin Maximization: Analyzing The Impact Of Different Feedstocks And Feedstock Ratios Using Organosolv Fractionation, Marc Banholzer

Masters Theses

Over-exploitation of fossil fuels coupled with increasing pressure to reduce carbon emissions are prompting a transition from conventional petrochemical feedstocks to sustainable and renewable sourced carbon. The use of lignocellulosic biomass as a feedstock for integrated biorefining is of current high interest, as separation into its component parts affords process streams of cellulose, hemicellulose and lignin, each of which can serve as a starting point for the production of biobased chemicals and fuels. Given the large number of potential sources of lignocellulosic feedstocks, the biorefinery will need to adapt to the supplies available over a normal growing season. Of particular …