Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Systems Analysis For Sustainability Assessment Of Biogas And Bio-Ch4 Production From Food Waste And Dairy Manure Mixtures In The Us, Sharath Kumar Ankathi Jan 2020

Systems Analysis For Sustainability Assessment Of Biogas And Bio-Ch4 Production From Food Waste And Dairy Manure Mixtures In The Us, Sharath Kumar Ankathi

Dissertations, Master's Theses and Master's Reports

The purpose of the dissertation is to relate systems analysis for bioenergy to identify optimum configurations for improved scenarios and to make better decisions in a systems perspective.

Chapter 1 is a review of the literature to identify the state of the knowledge in terms of systems analysis for anaerobic digestion (AD) bioenergy systems. The key outcomes from this review showed that anaerobic digestion of mixtures of food waste and animal manure has great potential to achieve economic and environmental benefits compared to other treatments of organic waste materials, such as landfilling or conventional manure management.

Chapter 2 focuses on …


Anaerobic Digestion Of Aqueous Pyrolysis Condensate, Connie Wen Aug 2018

Anaerobic Digestion Of Aqueous Pyrolysis Condensate, Connie Wen

Electronic Thesis and Dissertation Repository

Lignocellulosic material can be subjected to pyrolysis to yield pyrolysis liquid, biochar, and gas. The pyrolysis liquid resulting from the condensation of vapours can be separated into a rich organic condensate and an acidic “aqueous pyrolysis condensate” (APC) which may be considered a waste. The target of this research is subjecting APC to anaerobic digestion to produce biogas that can be energy purposed, and to reduce the organic load of APC to acceptable levels for possible disposal. From this study, it was found that without any treatment, the inoculum requires 50 to 60 days of adaptation period to reduce the …


A Bug’S Life: Integration Of Anaerobic Digestion And Bioelectrochemical Systems For Enhanced Energy Recovery From Wastewater Solids And Other Waste Substrates, Jeff Ryan Beegle May 2017

A Bug’S Life: Integration Of Anaerobic Digestion And Bioelectrochemical Systems For Enhanced Energy Recovery From Wastewater Solids And Other Waste Substrates, Jeff Ryan Beegle

Masters Theses

Organic waste streams, like domestic wastewater and municipal solid waste, have the potential to be used as feedstocks for biotechnology processes to produce high value products and energy. This thesis investigated the technological, economical, and environmental potential for integrated anaerobic digestion (AD) and bioelectrochemical system (BES) platforms as they were theoretically and physically evaluated for energy recovery from domestic wastewater. The first chapter of this thesis compared the theoretical energy efficiencies of converting waste directly into electricity, using AD and BES alone and in various combinations. This chapter reviewed the experimentally demonstrated energy efficiencies reported in the literature with comparisons …


Mechanistic Models On Enzymatic Hydrolysis And Anaerobic Digestion, Yang Zhang Jan 2015

Mechanistic Models On Enzymatic Hydrolysis And Anaerobic Digestion, Yang Zhang

Dissertations, Master's Theses and Master's Reports

For enzymatic hydrolysis, a mechanistic model on enzymatic hydrolysis of pure cellulosic substrates was improved to consider oligomer reactions with beta-glucanases, inhibition of oligomers to cellulases and enzyme decay. Then a novel and general modeling framework was developed for enzymatic hydrolysis of hemicellulose-cellulosic substrates. This mechanistic model, for the first time, took into consideration explicitly the time evolution of morphologies of intertwining cellulose and hemicelluloses. This novel mechanistic model was applied to optimize the composition of enzyme mixtures for substrate conversion and monosaccharides yield during simultaneous enzymatic hydrolysis of different lignocellulosic substrates. For anaerobic digestion, the original "Anaerobic Digestion Model …