Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemical and Biomolecular Engineering

University of Tennessee, Knoxville

Photosystem I

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Photosystem I-Based Applications For The Photo-Catalyzed Production Of Hydrogen And Electricity, Rosemary Khuu Le Dec 2014

Photosystem I-Based Applications For The Photo-Catalyzed Production Of Hydrogen And Electricity, Rosemary Khuu Le

Doctoral Dissertations

The aim of this dissertation was to optimize systems integrating the photosystem I (PSI) redox protein, which is involved in photosynthesis, with noble metals for electron transfer to show its versatility: 1) in solution coupled with platinum to mediate hydrogen evolution and 2) on a planar gold surface for electricity production.

Response surface methodology was utilized to study variables that affect hydrogen (H2) yield from platinized-PSI. Light intensity, temperature, and platinum concentration were varied during the platinum-photo-reduction process. Analysis of the effects of the variables on H2 yield allowed for determination of a condition for optimized hydrogen …


The Structure And Function Of Photosystem I And Photosystem I – Hydrogenase Protein Fusions: An Experimental And Computational Study, Bradley Jordan Harris Dec 2014

The Structure And Function Of Photosystem I And Photosystem I – Hydrogenase Protein Fusions: An Experimental And Computational Study, Bradley Jordan Harris

Doctoral Dissertations

Photosystem I (PSI) is a membrane protein involved in the photosynthetic cycle of plants, algae, and cyanobacteria that is of specific interest due to its ability to harness solar energy to generate reducing power. This work seeks to form an in vitro hybrid protein fusion between the membrane integral PSI protein and the membrane-bound hydrogenase (MBH) enzyme, in an effort to improve electron transport between these two proteins.

Small-angle neutron scattering (SANS) was used to characterize the detergent-solubilized solution structure of trimeric PSI from the cyanobacterium Thermosynechococcus elongatus, which showed that the detergent interacts primarily with the hydrophobic periphery …


Capturing More Light: Phycobilisome Characterization For Increased Hydrogen Production Efficiency, Paul Abraham Willard May 2012

Capturing More Light: Phycobilisome Characterization For Increased Hydrogen Production Efficiency, Paul Abraham Willard

Masters Theses

Alternative energy and biofuels are a growing area of research. The demand for more and clean energy is ever increasing, but the current technology is inefficient, expensive, and incapable of meeting the demands of the current market. Hydrogen is a potential future fuel, as it is both clean and renewable, but its formation through conventional means is costly and inefficient. Photosynthesis can be utilized for the formation of hydrogen, which can then serve as a convenient and renewable biofuel. Photosynthetic hydrogen evolution is observed in vitro, but the current photosystem design is not very versatile and optimized to use …


Protein Engineering For The Enhanced Photo-Production Of Hydrogen By Cyanobacterial Photosystem I, Ifeyinwa Jane Iwuchukwu May 2011

Protein Engineering For The Enhanced Photo-Production Of Hydrogen By Cyanobacterial Photosystem I, Ifeyinwa Jane Iwuchukwu

Doctoral Dissertations

Photosystem I (PSI) from plants, algae, and cyanobacteria can mediate H2 evolution in vivo and in vitro. A simple, self-platinization procedure that permits stable PSI-mediated H2 evolution in vitro has been developed. The H2 evolution capabilities of PSI from Thermosynechococcus elongatus have been characterized. This organism utilizes cytochrome c6 (cyt c6) as the e- donor to P700. Using a solution-based, self-organized platinization of the PSI nanoparticles, this study demonstrates a sodium ascorbate-cyt-PSI-Pt-H2 electron transport and proton reduction system that yields light-dependent H2. The system was thermostable with H2 evolution increasing up to 55°C. In addition, stability studies have shown the …