Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Study Level Recovery Processes Of Thorium And Several Rare Earth Elements From Monazite Ore, Makayla Hyde, Jaclyn Choate Sep 2021

Study Level Recovery Processes Of Thorium And Several Rare Earth Elements From Monazite Ore, Makayla Hyde, Jaclyn Choate

EURēCA: Exhibition of Undergraduate Research and Creative Achievement

Monazite ore is composed of several minerals including several rare earth element (REE) and thorium phosphates. Many past research projects have looked at the extraction of REE from monazite ore but have discarded the thorium phosphate compound as waste. Since thorium could be a possible fuel for state-of-the-art future nuclear reactors, this research focuses on a way to recover thorium from the monazite ore. The overall purpose of this research is to develop a conceptual recovery process that recovers thorium dioxide from monazite ore. In some parts of the world where uranium sources are limited; then, thorium could be used …


Elucidating Mechanisms And Genotypes Underlying Robust Phenotypes In Yarrowia Lipolytica, Caleb M. Walker May 2021

Elucidating Mechanisms And Genotypes Underlying Robust Phenotypes In Yarrowia Lipolytica, Caleb M. Walker

Doctoral Dissertations

Robustness is an important phenotype for bioenergy microbes to acquire but is difficult to engineer. Hence, tools for engineering microbial robustness are critical to unlock novel phenotypes for innovative bioprocessing strategies. The oleaginous yeast, Yarrowia lipolytica, is an exceptionally robust microbe that can tolerate stressful environments, assimilate a wide range of substrates, and produce high-value chemicals. In this doctoral dissertation, the impacts of systems biology and metabolic engineering to reveal mechanisms and identify genotypes- underlying robust phenotypes are addressed.

The first approach employs adaptive laboratory engineering to generate a platform strain by which to study superior robust mechanisms. This …


Engineering Modularity Of Ester Biosynthesis Across Biological Scales, Hyeongmin Seo May 2021

Engineering Modularity Of Ester Biosynthesis Across Biological Scales, Hyeongmin Seo

Doctoral Dissertations

Metabolic engineering and synthetic biology enable controlled manipulation of whole-cell biocatalysts to produce valuable chemicals from renewable feedstocks in a rapid and efficient manner, helping reduce our reliance on the conventional petroleum-based chemical synthesis. However, strain engineering process is costly and time-consuming that developing economically competitive bioprocess at industrial scale is still challenging. To accelerate the strain engineering process, modular cell engineering has been proposed as an innovative approach that harnesses modularity of metabolism for designing microbial cell factories. It is important to understand biological modularity and to develop design principles for effective implementation of modular cell engineering. In this …


Engineered Switch Protein Inspired By Novel Protein Affinity Transition Mode, Liang Fang May 2021

Engineered Switch Protein Inspired By Novel Protein Affinity Transition Mode, Liang Fang

Doctoral Dissertations

Many natural proteins involved in complex biological processes such as ligand binding and protein folding demonstrate multiple, allosterically-regulated conformational states, with protein activity regulated by effector molecules. The alpha L integrin and its inserted domain (I domain) is one example of such a protein. The binding of the effector molecule such as talin or filamin to the cytoplasmic domain of the integrin increases the binding affinity between I- domain and its ligand intercellular adhesion molecule-1, known as ICAM-1.There are multiple models attempting to describe the mechanism responsible for the change in binding affinity. According to research conducted by our lab, …