Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 36

Full-Text Articles in Engineering

Characterization Of Lignin Structural Variability And The Associated Application In Genome Wide Association Studies, Nathan D. Bryant Dec 2023

Characterization Of Lignin Structural Variability And The Associated Application In Genome Wide Association Studies, Nathan D. Bryant

Doctoral Dissertations

Poplar (Populus sp.) is a promising biofuel feedstock due to advantageous features such as fast growth, the ability to grow on marginal land, and relatively low lignin content. However, there is tremendous variability associated with the composition of biomass. Understanding this variability, especially in lignin, is crucial to developing and implementing financially viable, integrated biorefineries. Although lignin is typically described as being comprised of three primary monolignols (syringyl, guaiacyl, p-hydroxyphenyl), it is a highly irregular biopolymer that can incorporate non-canonical monolignols. It is also connected by a variety of interunit linkages, adding to its complexity. Secondary cell wall …


Understanding Lignin’S Fast Pyrolysis Through Examination Of The Thermolysis Mechanisms Of Model Oligomers, Ross Wesley Houston Aug 2023

Understanding Lignin’S Fast Pyrolysis Through Examination Of The Thermolysis Mechanisms Of Model Oligomers, Ross Wesley Houston

Doctoral Dissertations

The lignocellulosic biorefinery is a visionary concept that endeavors to provide an alternative to fossil-based refineries by producing biobased fungible fuels and specialty chemicals almost exclusively derived currently from petroleum refineries. This vision of the lignocellulosic biorefinery can only be realized if all fractions of lignocellulosic biomass are efficiently deconstructed and valorized to generate a diverse portfolio of products to sustain it against market vicissitudes. Of the three main structural constituents of lignocellulosic biomass (i.e., cellulose, hemicellulose, and lignin), lignin is underutilized despite being the most abundant renewable source of aromatic platform chemicals, representing a growing 250 billion dollar market. …


A Rapid And Ultra-Sensitive Biosensing Platform Based On Tunable Dielectrophoresis For Robust Poc Applications, Yu Jiang Aug 2022

A Rapid And Ultra-Sensitive Biosensing Platform Based On Tunable Dielectrophoresis For Robust Poc Applications, Yu Jiang

Doctoral Dissertations

With the ongoing pandemic, there have been increasing concerns recently regarding major public health issues such as abuse of organophosphorus compounds, pathogenic bacterial infections, and biosecurity in agricultural production. Biosensors have long been considered a kernel technology for next-generation diagnostic solutions to improve food safety and public health. Significant amounts of effort have been devoted to inventing novel sensing mechanisms, modifying their designs, improving their performance, and extending their application scopes. However, the reliability and selectivity of most biosensors still have much to be desired, which holds back the development and commercialization of biosensors, especially for on-site and point-of-care (POC) …


Elucidating Mammalian Cellular Responses To The Uptake Of Nanoparticles (Nps), Pathogens, And Lipoproteins: Similarities And Differences, Monireh Asoudeh Aug 2022

Elucidating Mammalian Cellular Responses To The Uptake Of Nanoparticles (Nps), Pathogens, And Lipoproteins: Similarities And Differences, Monireh Asoudeh

Doctoral Dissertations

Soft poly-ethylene-glycol (PEG)-based soft nanoparticles (NPs) including cylindrical (CNPs) micelles, spherical (SNPs) micelles, and lipid bilayer vesicles (LNPs) are thought to be treated as foreign objects by mammalian phagocytes. If this hypothesis is true, NPs should trigger a proinflammatory, autophagic phenotype that is similar to the one seen when macrophages phagocytose pathogens or when macrophage surface expressed proteins bind pathogen surface factors such as lipopolysaccharide (LPS). Here, we show that macrophage responses to the above NPs are almost completely unique from those triggered by group A streptococcus (GAS) pathogens (JRS4 cells) and LPS. Instead, macrophages treat these soft NPs more …


Crowd Control: Regulating The Spatial Organization Of Biopolymers And Gene Expression By Macromolecular Crowding, Gaurav Chauhan May 2022

Crowd Control: Regulating The Spatial Organization Of Biopolymers And Gene Expression By Macromolecular Crowding, Gaurav Chauhan

Doctoral Dissertations

The intracellular environment is crowded with macromolecules that can occupy a significant fraction of the cellular volume. This can give rise to attractive depletion interactions that impact the conformations and interactions of biopolymers, as well as their interactions with confining surfaces. We used computer simulations to study the effects of crowding on biologically-inspired models of polymers. We showed that crowding can lead to attractive interactions between two flexible ring polymers, and we further characterized the adsorption of both flexible and semiflexible polymers onto confining surfaces. These results indicate that crowding-induced depletion interactions could play a role in the spatial organization …


Interactions Between Soft Nanoparticles And Mammalian Cells, Mitchell Raith May 2022

Interactions Between Soft Nanoparticles And Mammalian Cells, Mitchell Raith

Doctoral Dissertations

Nanoparticles have been of interest to the pharmaceutical industry since the 1980s. The first FDA approved nanoparticle-based therapies included liposomal anesthesia agents. Since then, the amount of FDA-approved nanoparticle therapies remains low. This is because nanoparticle-patient interactions can be very complex and are not well understood. Complicating factors also include increasing obesity rates among the patient population and many small animal pre-clinical trials are completed with healthy, lean animals. The biochemical differences between lean and obese patients prevents early studies from accurately predicting nanoparticle clinical behaviors. Many nanoparticles fail in trails. In this thesis, I aimed to uncover how nanoparticles …


Improving The Biocompatibility Of The Bio-Inorganic Interface For Enhanced Photosystem I-Based Biophotovoltaic Device Performance, Alexandra H. Teodor May 2022

Improving The Biocompatibility Of The Bio-Inorganic Interface For Enhanced Photosystem I-Based Biophotovoltaic Device Performance, Alexandra H. Teodor

Doctoral Dissertations

The world’s energy demands are projected to increase by nearly 50% by the year 2040, and consumption of carbon-based fuels continues to release greenhouse gases such as carbon dioxide and methane into the atmosphere. This has been causally linked with climate change and increased extreme weather events, which has been further linked to adverse health outcomes and negative effects on biodiversity, food security, and increased disease transmission. Clearly, there is a need for a sustainable, carbon-free, and cost-effective method of energy production to meet growing energy production demands. The sun irradiates Earth’s surface annually with ~80,000 terawatts (TW), making solar …


Elucidating Mechanisms And Genotypes Underlying Robust Phenotypes In Yarrowia Lipolytica, Caleb M. Walker May 2021

Elucidating Mechanisms And Genotypes Underlying Robust Phenotypes In Yarrowia Lipolytica, Caleb M. Walker

Doctoral Dissertations

Robustness is an important phenotype for bioenergy microbes to acquire but is difficult to engineer. Hence, tools for engineering microbial robustness are critical to unlock novel phenotypes for innovative bioprocessing strategies. The oleaginous yeast, Yarrowia lipolytica, is an exceptionally robust microbe that can tolerate stressful environments, assimilate a wide range of substrates, and produce high-value chemicals. In this doctoral dissertation, the impacts of systems biology and metabolic engineering to reveal mechanisms and identify genotypes- underlying robust phenotypes are addressed.

The first approach employs adaptive laboratory engineering to generate a platform strain by which to study superior robust mechanisms. This …


Engineering Modularity Of Ester Biosynthesis Across Biological Scales, Hyeongmin Seo May 2021

Engineering Modularity Of Ester Biosynthesis Across Biological Scales, Hyeongmin Seo

Doctoral Dissertations

Metabolic engineering and synthetic biology enable controlled manipulation of whole-cell biocatalysts to produce valuable chemicals from renewable feedstocks in a rapid and efficient manner, helping reduce our reliance on the conventional petroleum-based chemical synthesis. However, strain engineering process is costly and time-consuming that developing economically competitive bioprocess at industrial scale is still challenging. To accelerate the strain engineering process, modular cell engineering has been proposed as an innovative approach that harnesses modularity of metabolism for designing microbial cell factories. It is important to understand biological modularity and to develop design principles for effective implementation of modular cell engineering. In this …


Engineered Switch Protein Inspired By Novel Protein Affinity Transition Mode, Liang Fang May 2021

Engineered Switch Protein Inspired By Novel Protein Affinity Transition Mode, Liang Fang

Doctoral Dissertations

Many natural proteins involved in complex biological processes such as ligand binding and protein folding demonstrate multiple, allosterically-regulated conformational states, with protein activity regulated by effector molecules. The alpha L integrin and its inserted domain (I domain) is one example of such a protein. The binding of the effector molecule such as talin or filamin to the cytoplasmic domain of the integrin increases the binding affinity between I- domain and its ligand intercellular adhesion molecule-1, known as ICAM-1.There are multiple models attempting to describe the mechanism responsible for the change in binding affinity. According to research conducted by our lab, …


Rapid Design, Construction, And Validation Of Synthetic Metabolic Pathways In A Modular Escherichia Coli (Chassis) Cell, Jong-Won Lee Dec 2020

Rapid Design, Construction, And Validation Of Synthetic Metabolic Pathways In A Modular Escherichia Coli (Chassis) Cell, Jong-Won Lee

Doctoral Dissertations

Current strain development has been hindered by the vast biochemical space in nature. The concept of modular cell design has been invented to enable rapid and predictable construction of multiple optimal production strains for efficient production of a large variety of biochemicals with minimal experimental effort. While modular cell design principles have been successfully validated in some cases, its development is still limited by the small library of the production modules demonstrated.

The goals of this thesis are i) to establish a framework for rapid design, construction, and validation of production modules to explore a large space of molecules (e.g., …


Approaches To Studying Bacterial Biofilms In The Bioeconomy With Nanofabrication Techniques And Engineered Platforms., Michelle Caroline Halsted Dec 2020

Approaches To Studying Bacterial Biofilms In The Bioeconomy With Nanofabrication Techniques And Engineered Platforms., Michelle Caroline Halsted

Doctoral Dissertations

Studies that estimate more than 90% of bacteria subsist in a biofilm state to survive environmental stressors. These biofilms persist on man-made and natural surfaces, and examples of the rich biofilm diversity extends from the roots of bioenergy crops to electroactive biofilms in bioelectrochemical reactors. Efforts to optimize microbial systems in the bioeconomy will benefit from an improved fundamental understanding of bacterial biofilms. An understanding of these microbial systems shows promise to increase crop yields with precision agriculture (e.g. biosynthetic fertilizer, microbial pesticides, and soil remediation) and increase commodity production yields in bioreactors. Yet conventional laboratory methods investigate these micron-scale …


Lithium Recovery Process From Spent Batteries, Nicholas A. Ross, Lacey Roberts, Jordan Leith, Woodi Woodland May 2020

Lithium Recovery Process From Spent Batteries, Nicholas A. Ross, Lacey Roberts, Jordan Leith, Woodi Woodland

Chancellor’s Honors Program Projects

No abstract provided.


Simulating Microbial Electrolysis For Renewable Hydrogen Production Integrated With Separation In Biorefinery, Christian James Wilson Aug 2017

Simulating Microbial Electrolysis For Renewable Hydrogen Production Integrated With Separation In Biorefinery, Christian James Wilson

Masters Theses

Biomass conversion to hydrocarbon fuels requires significant amounts of hydrogen. Fossil resources typically supply hydrogen via steam reforming. A new technology called microbial electrolysis cells (MECs) has emerged which can generate hydrogen from organic sources and biomass. The thermochemical route to fuels via pyrolysis generates bio-oil aqueous phase (BOAP) which can be used to make hydrogen. A process engineering and economic analysis of this technology was conducted for application in biorefineries of the future. Steam methane reforming, bio-oil separation and microbial electrolysis unit operations were simulated in Aspen Plus to derive the mass and energy balance for conversion of biomass. …


Morphological And Photoelectrochemical Characterization Of Membrane Reconstituted Photosystem I (Psi), Seyedeh Hanieh Niroomand May 2017

Morphological And Photoelectrochemical Characterization Of Membrane Reconstituted Photosystem I (Psi), Seyedeh Hanieh Niroomand

Doctoral Dissertations

The robust structural and photoactive electrochemical properties of Photosystem I (PSI), a transmembrane photosynthetic protein complex, make it an ideal candidate for incorporation into solid state bioelectronic or hybrid photovoltaic devices. However, the first step towards the successful fabrication of such devices requires systematic assembly of oriented and functional PSI onto desired bio-abio interfaces via suitable protein scaffoldings. Hence, this dissertation focuses on utilizing the cyanobacterial PSI for integration into organic/inorganic interfaces that mediate photo-electrochemical energy conversions for electricity and/or solar fuel production. To this end, in this study the effect of systematic incorporation of PSI complexes into synthetic membrane-bound …


A Bug’S Life: Integration Of Anaerobic Digestion And Bioelectrochemical Systems For Enhanced Energy Recovery From Wastewater Solids And Other Waste Substrates, Jeff Ryan Beegle May 2017

A Bug’S Life: Integration Of Anaerobic Digestion And Bioelectrochemical Systems For Enhanced Energy Recovery From Wastewater Solids And Other Waste Substrates, Jeff Ryan Beegle

Masters Theses

Organic waste streams, like domestic wastewater and municipal solid waste, have the potential to be used as feedstocks for biotechnology processes to produce high value products and energy. This thesis investigated the technological, economical, and environmental potential for integrated anaerobic digestion (AD) and bioelectrochemical system (BES) platforms as they were theoretically and physically evaluated for energy recovery from domestic wastewater. The first chapter of this thesis compared the theoretical energy efficiencies of converting waste directly into electricity, using AD and BES alone and in various combinations. This chapter reviewed the experimentally demonstrated energy efficiencies reported in the literature with comparisons …


Elucidating The Effects Of Metabolic State On Nanoparticle Distribution In Mice And In Vitro Uptake, Kevin James Quigley Dec 2016

Elucidating The Effects Of Metabolic State On Nanoparticle Distribution In Mice And In Vitro Uptake, Kevin James Quigley

Doctoral Dissertations

Since almost 70% of the U.S. population over 20 years old is overweight and 30% is obese, with much of the western world following suit, many patients that will potentially be administered circulating nanoparticles designed to localize to tumors and avoid non-target areas will have significant amounts of white adipose tissue (WAT), enlarged livers, and additional metabolic complications such as type 2 diabetes. However, studies on nanoparticle biodistribution and efficacy take place almost without exception in lean rodents with healthy metabolic states. In this work, I determined the biodistribution of model nanoparticles – neutral filomicelles and polystyrene spheres both carrying …


Lignin Maximization: Analyzing The Impact Of Different Feedstocks And Feedstock Ratios Using Organosolv Fractionation, Marc Banholzer Dec 2016

Lignin Maximization: Analyzing The Impact Of Different Feedstocks And Feedstock Ratios Using Organosolv Fractionation, Marc Banholzer

Masters Theses

Over-exploitation of fossil fuels coupled with increasing pressure to reduce carbon emissions are prompting a transition from conventional petrochemical feedstocks to sustainable and renewable sourced carbon. The use of lignocellulosic biomass as a feedstock for integrated biorefining is of current high interest, as separation into its component parts affords process streams of cellulose, hemicellulose and lignin, each of which can serve as a starting point for the production of biobased chemicals and fuels. Given the large number of potential sources of lignocellulosic feedstocks, the biorefinery will need to adapt to the supplies available over a normal growing season. Of particular …


In Silico Driven Metabolic Engineering Towards Enhancing Biofuel And Biochemical Production, Richard Adam Thompson May 2016

In Silico Driven Metabolic Engineering Towards Enhancing Biofuel And Biochemical Production, Richard Adam Thompson

Doctoral Dissertations

The development of a secure and sustainable energy economy is likely to require the production of fuels and commodity chemicals in a renewable manner. There has been renewed interest in biological commodity chemical production recently, in particular focusing on non-edible feedstocks. The fields of metabolic engineering and synthetic biology have arisen in the past 20 years to address the challenge of chemical production from biological feedstocks. Metabolic modeling is a powerful tool for studying the metabolism of an organism and predicting the effects of metabolic engineering strategies. Various techniques have been developed for modeling cellular metabolism, with the underlying principle …


Elucidating Mechanisms Of Lipid Droplet Formation In The Fission Yeast, Schizosaccharomyces Pombe, Alexander William Meyers Dec 2015

Elucidating Mechanisms Of Lipid Droplet Formation In The Fission Yeast, Schizosaccharomyces Pombe, Alexander William Meyers

Doctoral Dissertations

Cellular function relies on the proper sequestration of fats in organelles called lipid droplets. Lipid droplet metabolism is inherently linked to many disorders including obesity, type-2 diabetes, and atherosclerosis, so further elucidation of the bio-physical phenomena governing these diseases, is crucial for their respective treatments.

Once widely regarded as inert, these neutral lipid storage depots are highly dynamic and are increasingly shown to affect a wide array of biological processes. Droplet formation requires the accumulation of neutral lipids and related factors at specific cellular domains, however because this occurs at nanometer length-scales, details are lacking. Here, we try to provide …


Photosystem I-Based Applications For The Photo-Catalyzed Production Of Hydrogen And Electricity, Rosemary Khuu Le Dec 2014

Photosystem I-Based Applications For The Photo-Catalyzed Production Of Hydrogen And Electricity, Rosemary Khuu Le

Doctoral Dissertations

The aim of this dissertation was to optimize systems integrating the photosystem I (PSI) redox protein, which is involved in photosynthesis, with noble metals for electron transfer to show its versatility: 1) in solution coupled with platinum to mediate hydrogen evolution and 2) on a planar gold surface for electricity production.

Response surface methodology was utilized to study variables that affect hydrogen (H2) yield from platinized-PSI. Light intensity, temperature, and platinum concentration were varied during the platinum-photo-reduction process. Analysis of the effects of the variables on H2 yield allowed for determination of a condition for optimized hydrogen …


The Structure And Function Of Photosystem I And Photosystem I – Hydrogenase Protein Fusions: An Experimental And Computational Study, Bradley Jordan Harris Dec 2014

The Structure And Function Of Photosystem I And Photosystem I – Hydrogenase Protein Fusions: An Experimental And Computational Study, Bradley Jordan Harris

Doctoral Dissertations

Photosystem I (PSI) is a membrane protein involved in the photosynthetic cycle of plants, algae, and cyanobacteria that is of specific interest due to its ability to harness solar energy to generate reducing power. This work seeks to form an in vitro hybrid protein fusion between the membrane integral PSI protein and the membrane-bound hydrogenase (MBH) enzyme, in an effort to improve electron transport between these two proteins.

Small-angle neutron scattering (SANS) was used to characterize the detergent-solubilized solution structure of trimeric PSI from the cyanobacterium Thermosynechococcus elongatus, which showed that the detergent interacts primarily with the hydrophobic periphery …


Analytical And Computational Modeling Of Membrane Nanotubes, Sina Mirzaeifard Dec 2014

Analytical And Computational Modeling Of Membrane Nanotubes, Sina Mirzaeifard

Masters Theses

This thesis investigates the interplay between cell membranes and the actin cytoskeleton in cellular structures known as membrane nanotubes. Membrane nanotubes are slender membrane structures that physically connect cells over long distances, and experiments suggest that they play a role in transferring material and information between cells. Disrupting the actin cytoskeleton disrupts membrane nanotubes. Although recent studies have revealed insight into the physical properties and functions of membrane-actin systems, further research is needed to understand their behavior in biological contexts. Membrane nanotubes provide a novel system with which to investigate interactions between the cell membrane and actin.

In this thesis, …


A Tale Of Two Protein Switches: Engineering, Characterizing, And Understanding A Novel And A Natural Switch, James Vincent Price Dec 2013

A Tale Of Two Protein Switches: Engineering, Characterizing, And Understanding A Novel And A Natural Switch, James Vincent Price

Doctoral Dissertations

Throughout nature, many proteins provide a specific function in response to some input signal (e.g., phosyphorylation, pH, etc.), a process that is oftentimes described as switching a protein “on” or “off.” The advent of protein engineering has allowed for the creation and understanding of chimeric proteins for uses in a number of applications such as therapeutics, biosensors and energy production. Two proteins, hemagglutinin (HA) of fowl plague influenza virus and a chimeric protein comprising a fusion between the LFA-1 I domain and the EF3 and EF4 hands of calmodulin, have been investigated in this dissertation. Both of these proteins undergo …


Filomicelle Functionalization And Stability Studies With Applications For Malaria Treatments, Megan Haoyun Yang Aug 2013

Filomicelle Functionalization And Stability Studies With Applications For Malaria Treatments, Megan Haoyun Yang

Masters Theses

Malaria is an infectious disease caused by the parasite Plasmodium that is transmitted by mosquitoes. It is estimated that malaria causes 1.1 million deaths per year globally. While anti-malarial drugs have been effective in treating infected individuals, new methodologies are needed. Treatments may benefit from approaches that encapsulate drugs in vehicles allowing for more effective delivery. To this end, the use of targeted drug delivery vehicles called filomicelles to treat malaria is proposed.

Certain amphiphilic diblock copolymers self-assemble into filomicelles (long and stable cylindrical micelles), which are capable of carrying hydrophobic drugs in the bodies of rodents. It is shown …


Application Of Synthetic Biology For Increasing Anaerobic Biodiesel Production In Escherichia Coli, Michael Christopher Wierzbicki Aug 2013

Application Of Synthetic Biology For Increasing Anaerobic Biodiesel Production In Escherichia Coli, Michael Christopher Wierzbicki

Masters Theses

The ever-increasing demand for transportation biofuels requires new and novel approaches to solve the complexities associated with efficient biofuel production. Ethanol, the most common biofuel, has physical limitation associated with difficulty of separations and issues with water contamination and as such is not a long-term transportation fuel solution. (Lou & Singh, 2010; Wheals, Basso, Alves, & Amorim, 1999) Biodiesel is seen as a possible alternative to ethanol due to its hydrophobicity and also has comparable energy density and cetane number to its petroleum derived counterpart. (Kalscheuer, Stölting, & Steinbüchel, 2006) Because of feedstock limitations, biodiesel produced from vegetable oils is …


Industrial Robustness: Understanding The Mechanism Of Tolerance For The Populus Hydrolysate Tolerant Strain Of Clostridium Thermocellum, Jessica Leigh Linville May 2013

Industrial Robustness: Understanding The Mechanism Of Tolerance For The Populus Hydrolysate Tolerant Strain Of Clostridium Thermocellum, Jessica Leigh Linville

Doctoral Dissertations

An industrially robust microorganism that can efficiently degrade and convert lignocellulosic biomass into ethanol and next-generation fuels is required to economically produce future sustainable liquid transportation fuels. The anaerobic, thermophilic, cellulolytic bacterium Clostridium thermocellum is a candidate microorganism for such conversions but it, like many bacteria, is sensitive to potential toxic inhibitors developed in the hydrolysate produced during biomass processing. Microbial processes leading to tolerance of the inhibitory compounds found in the pretreated biomass hydrolysate are likely complex and involve multiple genes. In this study, a 17.5% v/v Populus hydrolysate tolerant mutant strain of C. thermocellum was developed by directed …


Characterization Of Influenza Hemagglutinin Mutants For The Elucidation Of Key Residues’ Effect On Activation, Morgan Baltz May 2013

Characterization Of Influenza Hemagglutinin Mutants For The Elucidation Of Key Residues’ Effect On Activation, Morgan Baltz

Chancellor’s Honors Program Projects

No abstract provided.


Predicting Enzyme Targets For Optimization Of Metabolic Networks Under Uncertainty, David Christopher Flowers Dec 2012

Predicting Enzyme Targets For Optimization Of Metabolic Networks Under Uncertainty, David Christopher Flowers

Masters Theses

Recently, ensemble modeling was applied to metabolic networks for the sake of predicting the effects of genetic manipulations on the observed phenotype of the system. The ensemble of models is generated from experimental wild-type flux data and screened using phenotypic data from gene overexpression and knockout experiments, leaving predictive models. The need for data from multiple genetic perturbation experiments is an inherent limitation to this approach. In this investigation, ensemble modeling is used alongside elementary mode analysis to attempt to predict those enzymatic perturbations that are most likely to result in an increase in a target yield and a target …


Capturing More Light: Phycobilisome Characterization For Increased Hydrogen Production Efficiency, Paul Abraham Willard May 2012

Capturing More Light: Phycobilisome Characterization For Increased Hydrogen Production Efficiency, Paul Abraham Willard

Masters Theses

Alternative energy and biofuels are a growing area of research. The demand for more and clean energy is ever increasing, but the current technology is inefficient, expensive, and incapable of meeting the demands of the current market. Hydrogen is a potential future fuel, as it is both clean and renewable, but its formation through conventional means is costly and inefficient. Photosynthesis can be utilized for the formation of hydrogen, which can then serve as a convenient and renewable biofuel. Photosynthetic hydrogen evolution is observed in vitro, but the current photosystem design is not very versatile and optimized to use …