Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Investigation Of 186Re Via Radiative Thermal-Neutron Capture On 185Re, David A. Matters, Andrew G. Lerch, A. M. Hurst, L. Szentmiklosi, J. J. Carroll, B. Detwiler, Zs. Revay, John W. Mcclory, Stephen R. Mchale, R. B. Firestone, B. W. Sleaford, M. Krticka, T. Belgya May 2016

Investigation Of 186Re Via Radiative Thermal-Neutron Capture On 185Re, David A. Matters, Andrew G. Lerch, A. M. Hurst, L. Szentmiklosi, J. J. Carroll, B. Detwiler, Zs. Revay, John W. Mcclory, Stephen R. Mchale, R. B. Firestone, B. W. Sleaford, M. Krticka, T. Belgya

Faculty Publications

Partial 𝛾-ray production cross sections and the total radiative thermal-neutron capture cross section for the 185Re(n,𝛾)186Re reaction were measured using the Prompt Gamma Activation Analysis facility at the Budapest Research Reactor with an enriched 185Re target. The 186Re cross sections were standardized using well-known 35Cl(n,𝛾)36Cl cross sections from irradiation of a stoichiometric natReCl3 target. The resulting cross sections for transitions feeding the 186Re ground state from low-lying levels below a cutoff energy of Ec=746keV were combined with a modeled probability of ground-state feeding from levels above E …


Identification Of The Zinc-Oxygen Divacancy In Zno Crystals, Maurio S. Holston, Eric M. Golden, Brant E. Kananen, John W. Mcclory, Nancy C. Giles, Larry E. Halliburton Apr 2016

Identification Of The Zinc-Oxygen Divacancy In Zno Crystals, Maurio S. Holston, Eric M. Golden, Brant E. Kananen, John W. Mcclory, Nancy C. Giles, Larry E. Halliburton

Faculty Publications

An electron paramagnetic resonance (EPR) spectrum in neutron-irradiated ZnO crystals is assigned to the zinc-oxygen divacancy. These divacancies are observed in the bulk of both hydrothermally grown and seeded-chemical-vapor-transport-grown crystals after irradiations with fast neutrons. Neutral nonparamagnetic complexes consisting of adjacent zinc and oxygen vacancies are formed during the irradiation. Subsequent illumination below ∼150 K with 442 nm laser light converts these (V2−Zn − V2+O)0 defects to their EPR-active state (VZn − V2+O)+ as electrons are transferred to donors. The resulting photoinduced S = 1/2 spectrum of the …