Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Robot Learning From Human Observation Using Deep Neural Networks, Michael Elachkar Feb 2022

Robot Learning From Human Observation Using Deep Neural Networks, Michael Elachkar

Electronic Theses and Dissertations

Industrial robots have gained traction in the last twenty years and have become an integral component in any sector empowering automation. Specifically, the automotive industry implements a wide range of industrial robots in a multitude of assembly lines worldwide. These robots perform tasks with the utmost level of repeatability and incomparable speed. It is that speed and consistency that has always made the robotic task an upgrade over the same task completed by a human. The cost savings is a great return on investment causing corporations to automate and deploy robotic solutions wherever feasible.

The cost to commission and set …


Compensation Sliding Cross Coupling Control Research Of Cartesian Coordinate Robot, Wang Wei, Zhimei Chen, Zhenyan Wang Apr 2021

Compensation Sliding Cross Coupling Control Research Of Cartesian Coordinate Robot, Wang Wei, Zhimei Chen, Zhenyan Wang

Journal of System Simulation

Abstract: For a typical Cartesian coordinate robot controls precision is low, based on a single-axis mathematical model, a contour error model for a typical robot whose axes are orthogonal to each other is established. An improved double-power approach law is used to design a terminal sliding mode controller to improve the robot. The integral compensation terms are added to stably compensate the position accuracy of each axis to improve the overall trajectory tracking accuracy, and the cross-coupling control between the axes is used to eliminate the contour error between the axes. It not only weakens the chattering of traditional sliding …


Traversal Path Planning And Simulation Of Robot Based On Radiation Scanning, Bin Lin, Guanghui Han, Chenchen Song, Yajing Zhang Jan 2021

Traversal Path Planning And Simulation Of Robot Based On Radiation Scanning, Bin Lin, Guanghui Han, Chenchen Song, Yajing Zhang

Journal of System Simulation

Abstract: Aiming at the high repetition rate and many turns of robot paths based on BINN algorithm, an ITPPA combining the template model and the RS algorithm is proposed. The BINN algorithm is used to formulate the non-obstacle walking strategy. Multiple obstacle avoidance path templates are designed to ensure that the robot could avoid obstacles in an orderly manner. RS algorithm is used to guide the robot to escape the dead zone quickly. Simulation results show that, compared with BINN algorithm, ITPPA could not only effectively reduce the path repetition rate and the number of turning and energy consumption …


Visual Feedback Fuzzy Control For A Robot Manipulator Based On Svr Learning, Xianxia Zhang, Jinqiang Zhang, Zhiyuan Li, Shiwei Ma, Banghua Yang Oct 2020

Visual Feedback Fuzzy Control For A Robot Manipulator Based On Svr Learning, Xianxia Zhang, Jinqiang Zhang, Zhiyuan Li, Shiwei Ma, Banghua Yang

Journal of System Simulation

Abstract: A fuzzy controller based on SVR learning is proposed for uncalibrated robot visual servoing. In this paper, a fuzzy controller is used to directly construct the nonlinear mapping between image features and robot joint motion. The fuzzy basis function of the fuzzy controller is taken as the kernel function of an SVR and the equivalent relationship between the SVR and the fuzzy controller is established. The learned support vector from the SVR is used as the rule of the fuzzy controller. Since all rules are learned from the data, there is no need to manually design the rules. …


Brian Valdez - Dynamics And Control Of A 3-Dof Manipulator With Deep Learning Feedback, Brian Orlando Valdez Jan 2020

Brian Valdez - Dynamics And Control Of A 3-Dof Manipulator With Deep Learning Feedback, Brian Orlando Valdez

Open Access Theses & Dissertations

With the ever-increasing demands in the space domain and accessibility to low-cost small satellite platforms for educational and scientific projects, efforts are being made in various technology capacities including robotics and artificial intelligence in microgravity. The MIRO Center for Space Exploration and Technology Research (cSETR) prepares the development of their second nanosatellite to launch to space and it is with that opportunity that a 3-DOF robotic arm is in development to be one of the payloads in the nanosatellite. Analyses, hardware implementation, and testing demonstrate a potential positive outcome from including the payload in the nanosatellite and a deep learning …


Uncalibrated Visual Servoing Based On Kalman Filter Optimized By Spsa, Jinqiang Zhang, Xianxia Zhang Jan 2019

Uncalibrated Visual Servoing Based On Kalman Filter Optimized By Spsa, Jinqiang Zhang, Xianxia Zhang

Journal of System Simulation

Abstract: Considering the problem of robot uncalibrated visual servoing, this paper presents a method for online estimation of image Jacobian matrix based on Kalman filter optimized by simultaneous perturbation stochastic approximation algorithm. This method takes the robot image Jacobian matrix as the system state, and uses Kalman filter to observe the system state. In order to improve the performance of the filter, the simultaneous perturbation stochastic approximation algorithm is used to optimize the filter parameters. This method is used to estimate the image Jacobian matrix and to design the control strategy, which can avoid complicated system calibration process. The simulation …


Cooperative 3-D Map Generation Using Multiple Uavs, Andrew Erik Lawson Jun 2015

Cooperative 3-D Map Generation Using Multiple Uavs, Andrew Erik Lawson

University Scholar Projects

This report aims to demonstrate the feasibility of building a global 3-D map from multiple UAV robots in a GPS-denied, indoor environment. Presented are the design of each robot and the reasoning behind choosing its hardware and software components, the process in which a single robot obtains a individual 3-D map entirely onboard, and lastly how the mapping concept is extended to multiple robotic agents to form a global 3-D map using a centralized server. In the latter section, this report focuses on two algorithms, Online Mapping and Map Fusion, developed to facilitate the cooperative approach. A limited selection …