Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Representation And Analysis Of Multi-Modal, Nonuniform Time Series Data: An Application To Survival Prognosis Of Oncology Patients In An Outpatient Setting, Jennifer Winikus Jan 2016

Representation And Analysis Of Multi-Modal, Nonuniform Time Series Data: An Application To Survival Prognosis Of Oncology Patients In An Outpatient Setting, Jennifer Winikus

Dissertations, Master's Theses and Master's Reports

The representation of nonuniform, multi-modal, time-limited time series data is complex and explored through the use of discrete representation, dimensionality reduction with segmentation based techniques, and with behavioral representation approaches. These explorations are done with a focus on an outpatient oncology setting with the classification and regression analysis being used for length of survival prognosis. Each decision of representation and analysis is not independent, with implications of each decision in method for how the data is represented and then which analysis technique is used. One unique aspect of the work is the use of outpatient clinical data for patients, which …


Robotic Swarming Without Inter-Agent Communication, Daniel Jonathan Standish Jan 2013

Robotic Swarming Without Inter-Agent Communication, Daniel Jonathan Standish

USF Tampa Graduate Theses and Dissertations

Many physical and algorithmic swarms utilize inter-agent communication to achieve advanced swarming behaviors. These swarms are inspired by biological swarms that can be seen throughout nature and include bee swarms, ant colonies, fish schools, and bird flocks. These biological swarms do not utilize inter-agent communication like their physical and algorithmic counterparts. Instead, organisms in nature rely on a local awareness of other swarm members that facilitates proper swarm motion and behavior. This research aims to pursue an effective swarm algorithm using only line-of-sight proximity information and no inter-agent communication. It is expected that the swarm performance will be lower than …