Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Artificial Intelligence and Robotics

PDF

Old Dominion University

Safety

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Enhancing Pedestrian-Autonomous Vehicle Safety In Low Visibility Scenarios: A Comprehensive Simulation Method, Zizheng Yan, Yang Liu, Hong Yang Apr 2023

Enhancing Pedestrian-Autonomous Vehicle Safety In Low Visibility Scenarios: A Comprehensive Simulation Method, Zizheng Yan, Yang Liu, Hong Yang

Modeling, Simulation and Visualization Student Capstone Conference

Self-driving cars raise safety concerns, particularly regarding pedestrian interactions. Current research lacks a systematic understanding of these interactions in diverse scenarios. Autonomous Vehicle (AV) performance can vary due to perception accuracy, algorithm reliability, and environmental dynamics. This study examines AV-pedestrian safety issues, focusing on low visibility conditions, using a co-simulation framework combining virtual reality and an autonomous driving simulator. 40 experiments were conducted, extracting surrogate safety measures (SSMs) from AV and pedestrian trajectories. The results indicate that low visibility can impair AV performance, increasing conflict risks for pedestrians. AV algorithms may require further enhancements and validations for consistent safety performance …


Artificial Intelligence-Enabled Exploratory Cyber-Physical Safety Analyzer Framework For Civilian Urban Air Mobility, Md. Shirajum Munir, Sumit Howlader Dipro, Kamrul Hasan, Tariqul Islam, Sachin Shetty Jan 2023

Artificial Intelligence-Enabled Exploratory Cyber-Physical Safety Analyzer Framework For Civilian Urban Air Mobility, Md. Shirajum Munir, Sumit Howlader Dipro, Kamrul Hasan, Tariqul Islam, Sachin Shetty

VMASC Publications

Urban air mobility (UAM) has become a potential candidate for civilization for serving smart citizens, such as through delivery, surveillance, and air taxis. However, safety concerns have grown since commercial UAM uses a publicly available communication infrastructure that enhances the risk of jamming and spoofing attacks to steal or crash crafts in UAM. To protect commercial UAM from cyberattacks and theft, this work proposes an artificial intelligence (AI)-enabled exploratory cyber-physical safety analyzer framework. The proposed framework devises supervised learning-based AI schemes such as decision tree, random forests, logistic regression, K-nearest neighbors (KNN), and long short-term memory (LSTM) for predicting and …