Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

A Multi-Scale Homogenization Scheme For Modeling Anisotropic Material’S Elastic And Failure Response, Justin Matthew Garrard Dec 2021

A Multi-Scale Homogenization Scheme For Modeling Anisotropic Material’S Elastic And Failure Response, Justin Matthew Garrard

Doctoral Dissertations

The effect of small-scale random defects such as microcracks or inclusions are critical to the prediction of material failure, yet including these in a fracture simulation can be difficult to perform efficiently. Typically, work has focused on implementing these through a statistical characterization of the micro- or meso-scales. This characterization has traditionally focused on the spatial distribution of faults, assuming the material is purely isotropic. At the macro-scale, many materials can be assumed to be fully isotropic and homogeneous, but at the small scale may show significant anisotropy or heterogeneity. Other materials may be effectively anisotropic in bulk, such as …


Assessing Mechanical Performance Of Dissimilar Steel Systems Made Via Wire-Arc Additive Manufacturing, Obed Daniel Acevedo Dec 2021

Assessing Mechanical Performance Of Dissimilar Steel Systems Made Via Wire-Arc Additive Manufacturing, Obed Daniel Acevedo

Masters Theses

Hot stamping is part of a specific type of metalworking procedure widely used in the automotive industry. This research seeks to help make hot stamp tooling component production more cost-effective by using large-scale additive manufacturing. Additive manufacturing can produce dissimilar steel components that can be more cost-effective and time-efficient and allow for complex geometries to be made. A dissimilar steel system consisting of 410 martensitic stainless steel and AWS ER70S-6 mild steel is proposed to make hot stamps, making them more cost-efficient. However, the material interface's mechanical behavior in 410SS-mild steel additively manufactured material systems is not well understood. This …


Motor Control-Based Assessment Of Therapy Effects In Individuals Post-Stroke: Implications For Prediction Of Response And Subject-Specific Modifications, Ashley Rice May 2021

Motor Control-Based Assessment Of Therapy Effects In Individuals Post-Stroke: Implications For Prediction Of Response And Subject-Specific Modifications, Ashley Rice

Doctoral Dissertations

Producing a coordinated motion such as walking is, at its root, the result of healthy communication pathways between the central nervous system and the musculoskeletal system. The central nervous system produces an electrical signal responsible for the excitation of a muscle, and the musculoskeletal system contains the necessary equipment for producing a movement-driving force to achieve a desired motion. Motor control refers to the ability an individual has to produce a desired motion, and the complexity of motor control is a mathematical concept stemming from how the electrical signals from the central nervous system translate to muscle activations. Exercising a …


Process-Structure-Property Relationships In 3d-Printed Epoxy Composites Produced Via Material Extrusion Additive Manufacturing, Nadim S. Hmeidat May 2021

Process-Structure-Property Relationships In 3d-Printed Epoxy Composites Produced Via Material Extrusion Additive Manufacturing, Nadim S. Hmeidat

Doctoral Dissertations

Extrusion-based additive manufacturing (AM) technologies, such as direct ink writing (DIW), offer unique opportunities to create composite materials and novel multi-material architectures that are not feasible using other AM technologies. DIW is a novel 3D-printing approach in which viscoelastic inks, with favorable rheological properties, are extruded through fine nozzles and patterned in a filament form at room temperature.

Recent developments in DIW of polymer composites have led to expanding the range of materials used for printing, as well as introducing novel deposition strategies to control filler orientation and create improved functional/structural composite materials. Despite these substantial advancements, the successful and …


Correlating Fracture Toughness And Surface Roughness For A Ductile Epoxy Adhered To Aluminum Substrates, Kurt Ryan Smith May 2021

Correlating Fracture Toughness And Surface Roughness For A Ductile Epoxy Adhered To Aluminum Substrates, Kurt Ryan Smith

Masters Theses

Adhesively bonded joints are used across multiple disciplines as an efficient and cost effective method for reinforcing, repairing, or creating new structures. Sufficient understanding of the bond line characteristics of the adhesive is necessary to properly design a reliable bonded joint and ensure a long service life. It is well understood that surface preparation has a significant impact on these interface characteristics as a given level of surface roughness achieves mechanical interlocking between the resin and metal and is important to prevent premature interfacial failure [1]. The goal of this study is to characterize the fracture toughness values for an …