Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Reactive Chemistries For Protein Labeling, Degradation, And Stimuli Responsive Delivery, Myrat Kurbanov Nov 2023

Reactive Chemistries For Protein Labeling, Degradation, And Stimuli Responsive Delivery, Myrat Kurbanov

Doctoral Dissertations

Reactive chemistries for protein chemical modification play an instrumental role in chemical biology, proteomics, and therapeutics. Depending on the application, the selectivity of these modifications can range from precise modification of an amino acid sequence by genetic manipulation of protein expression machinery to a stochastic modification of lysine residues on the protein surface. Ligand-Directed (LD) chemistry is one of the few methods for targeted modification of endogenous proteins without genetic engineering. However, current LD strategies are limited by stringent amino acid selectivity. To bridge this gap, this thesis focuses on the development of highly reactive LD Triggerable Michael Acceptors (LD-TMAcs) …


Chromatographic Dynamic Chemisorption, Shreya Thakkar Jun 2022

Chromatographic Dynamic Chemisorption, Shreya Thakkar

Masters Theses

Reaction rates of catalytic cycles over supported metal catalysts are normalized by the exposed metal atoms on the catalyst surface, reported as site time yields which provide a rigorous standard to compare distinct metal surfaces. Defined as the fraction of exposed metal surface atoms to the total number of metal atoms, it is important to measure the dispersion of supported metal catalysts to report standardized rates for kinetic investigations. Multiple characterization techniques such as electron microscopy, spectroscopy and chemisorption are exploited for catalyst dispersion measurements. While effective, electron microscopy and spectroscopy are not readily accessible due to cost and maintenance …


Evaluation Report, Alan Peterfreund Jan 2014

Evaluation Report, Alan Peterfreund

STEM Digital

This evaluation report synthesizes the results of evaluation activities conducted by SageFox Consulting Group of the STEM DIGITAL project led by the UMass STEM Ed Institute for its no-cost extension year, covering the period September 2013 to August 2014. The goals of the program are to facilitate the participants’ abilities to stimulate student interest in STEM careers while engaging them in ways to think critically about their environment. Participating teachers incorporated digital cameras and Analyzing Digital Images (ADI) software into lab activities focusing on environmental science. STEM DIGITAL materials focused on three strands related to (1) ozone and air quality, …


Measuring Lengths And Areas With Adi. Student Guide, Morton Sternheim Jan 2011

Measuring Lengths And Areas With Adi. Student Guide, Morton Sternheim

STEM Digital

No abstract provided.


Measuring The Acceleration Of Falling Objects, John Pickle Jan 2011

Measuring The Acceleration Of Falling Objects, John Pickle

STEM Digital

Earth's gravity pulls all objects toward its center, and near the Earth's surface. Objects in free fall accelerate at 9.8 m/s2 vertically downward, provided air resistance is negligible. This value of acceleration is often referred to as "g". There are many ways to measure this rate of acceleration, and most require a timing device. Typically, stopwatches are the least expensive technology, so these are commonly available in high school science classrooms. With the recent addition of movie cameras on cell phones and digital cameras, another timing tool is available at moderate cost (free if the school policy …


Analyzing Digital Images (Adi) Resources, Rob Snyder Jan 2011

Analyzing Digital Images (Adi) Resources, Rob Snyder

STEM Digital

Basic introduction to installing and using ADI


Water Treatment Experiments, David Reckhow Jan 2011

Water Treatment Experiments, David Reckhow

STEM Digital

•The water industry spends a lot of money and effort on removal of natural organic matter (NOM) from drinking waters •Problems with NOM (the more NOM the bigger problem) –NOM interferes with the ability of water treatment systems to remove substances that cause disease •Pathogenic organisms •Toxic chemicals –NOM reacts with chlorine‐based disinfectants forming carcinogenic organic byproducts


Experimental Design For Ozone Projects, Deborah Carlisle, Stephen Schneider Jan 2011

Experimental Design For Ozone Projects, Deborah Carlisle, Stephen Schneider

STEM Digital

No abstract provided.


Abc's Of Dew (Adi) Software, John Pickle Jan 2009

Abc's Of Dew (Adi) Software, John Pickle

STEM Digital

Introduction to three color light, pixels, DEW (ADI) tools