Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering

Additive manufacturing

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Fabrication And Testing Of Catalyst-Infused Filament For 3d Printing Of Ignition-Augmented Hybrid Rocket Fuels, Kurt C. Olsen Aug 2022

Fabrication And Testing Of Catalyst-Infused Filament For 3d Printing Of Ignition-Augmented Hybrid Rocket Fuels, Kurt C. Olsen

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

This thesis describes and addresses the need for reliable ignition in small satellite hybrid propulsion systems using higher density oxidizers. It describes methods of creating custom 3D printing ABS plastic based filaments that contain small amounts of catalysts. These catalysts lead to a more reliable and energy-efficient ignition of a hybrid rocked propulsion system using catalyst-infused ABS and nitrous oxide and oxygen blend called Nytrox, commonly known as ”laughing gas.” The ”laughing gas” has a higher density and can therefore provide more ”miles per gallon” in a hybrid propulsion system on a small satellite when compared to gaseous oxygen (GOX). …


Additively-Manufactured Hybrid Rocket Consumable Structure For Cubesat Propulsion, Britany L. Chamberlain Dec 2018

Additively-Manufactured Hybrid Rocket Consumable Structure For Cubesat Propulsion, Britany L. Chamberlain

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Three-dimensional, additive printing has emerged as an exciting new technology for the design and manufacture of small spacecraft systems. Using 3-D printed thermoplastic materials, hybrid rocket fuel grains can be printed with nearly any cross-sectional shape, and embedded cavities are easily achieved. Applying this technology to print fuel materials directly into a CubeSat frame results in an efficient, cost-effective alternative to existing CubeSat propulsion systems. Different 3-D printed materials and geometries were evaluated for their performance as propellants and as structural elements. Prototype "thrust columns" with embedded fuel ports were printed from a combination of acrylonitrile utadiene styrene (ABS) and …