Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Numerical Modeling Of Advanced Propulsion Systems, Peetak P. Mitra Oct 2021

Numerical Modeling Of Advanced Propulsion Systems, Peetak P. Mitra

Doctoral Dissertations

Numerical modeling of advanced propulsion systems such as the Internal Combustion Engine (ICE) is of great interest to the community due to the magnitude of compute/algorithmic challenges. Fuel spray atomization, which determines the rate of fuel-air mixing, is a critical limiting process for the phenomena of combustion within ICEs. Fuel spray atomization has proven to be a formidable challenge for the state-of-the-art numerical models due to its highly transient, multi-scale, and multi-phase nature. Current models for primary atomization employ a high degree of empiricism in the form of model constants. This level of empiricism often reduces the art of predictive …


Bibliometric Analysis On Artificial Compressibility Method Based Cfd Simulations, Bhavna Hemraj Joshi Miss, Chandrakant R. Sonawane Dr, Priyambada Bada Praharaj Mrs, Anand Kumar Pandey Dr Jun 2021

Bibliometric Analysis On Artificial Compressibility Method Based Cfd Simulations, Bhavna Hemraj Joshi Miss, Chandrakant R. Sonawane Dr, Priyambada Bada Praharaj Mrs, Anand Kumar Pandey Dr

Library Philosophy and Practice (e-journal)

This bibliometric analysis in this paper aims to study the quantitative progress done in the artificial compressibility (AC) method-based CFD simulation and analyze its potential in solving incompressible flow simulations in computational fluid dynamics smoothly. The sector of CFD is enhancing more and more maturely due to advancements in computing architecture, numerical methods, and simulation tools. There have been various attempts to solve the pressure-velocity coupling issue in the Navier-Stokes equation. The artificial compressibility method (ACM), as opposed to pressure-correction methods, solves the incompressible equation in a non-segregated manner. With the introduction of the ACM, the system of the equation …


Numerical Reconstruction Of Spalled Particle Trajectories In An Arc-Jet Environment, Raghava S. C. Davuluri, Sean C. C. Bailey, Kaveh A. Tagavi, Alexandre Martin Jan 2021

Numerical Reconstruction Of Spalled Particle Trajectories In An Arc-Jet Environment, Raghava S. C. Davuluri, Sean C. C. Bailey, Kaveh A. Tagavi, Alexandre Martin

Mechanical Engineering Faculty Publications

To evaluate the effects of spallation on ablative material, it is necessary to evaluate the mass loss. To do so, a Lagrangian particle trajectory code is used to reconstruct trajectories that match the experimental data for all kinematic parameters. The results from spallation experiments conducted at the NASA HYMETS facility over a wedge sample were used. A data-driven adaptive methodology was used to adapts the ejection parameters until the numerical trajectory matches the experimental data. The preliminary reconstruction results show that the size of the particles seemed to be correlated with the location of the ejection event. The size of …


Characterization Of The Common Research Model Wing For Low-Fidelity Aerostructural Analysis, Jeffrey D. Taylor, Douglas F. Hunsaker Jan 2021

Characterization Of The Common Research Model Wing For Low-Fidelity Aerostructural Analysis, Jeffrey D. Taylor, Douglas F. Hunsaker

Mechanical and Aerospace Engineering Student Publications and Presentations

A characterization of the Common Research Model (CRM) wing for low-fidelity aerostructural optimization is presented. The geometric and structural properties are based on the CAD geometries and finite-element models for the CRM wing and the undeflected Common Research Model Wing (uCRM). Three approximations are presented for the elastic axis from previously-published studies on wing boxes similar to the uCRM, and approximations of the flexural and torsional rigidity are presented from a previously-published study using the uCRM wing. The characterization presented in this paper is intended to be used within low-fidelity aerostructural analysis tools to facilitate rapid design optimization and exploratory …


Development Of Lifting Line Theory For The Fanwing Propulsion System, Christopher Kaminski Jan 2021

Development Of Lifting Line Theory For The Fanwing Propulsion System, Christopher Kaminski

Honors Undergraduate Theses

The FanWing propulsion system is a novel propulsion system which aerodynamically behaves as a hybrid between a helicopter and a fixed wing aircraft, and if the knowledge base with regards to this novel concept can be fully explored, there could be a new class of aircraft developed. In the current research, only 2D CFD studies have been done for the FanWing, hence the 3D lift characteristics of the FanWing have been unknown thus far, at least in the theoretical domain. Therefore, it was proposed to develop a modified Prandtl's Lifting Line Theory numerical solution and a CFD solution, comparing the …


Reveal Wind Loading Of Tornadoes And Hurricanes On Civil Structures Towards Hazard-Resistant Design, Ryan Honerkamp Jan 2021

Reveal Wind Loading Of Tornadoes And Hurricanes On Civil Structures Towards Hazard-Resistant Design, Ryan Honerkamp

Doctoral Dissertations

"Extreme winds impacting civil structures lead to death and destruction in all regions of the world. Specifically, tornadoes and hurricanes impact communities with severe devastation. On average, 1200 tornadoes occur in the United States every year. Tornadoes occur predominantly in the Central and Southeastern United States, accounting for an annual $1 billion in economic losses, 1500 injuries, and 90 deaths. The Joplin, MO Tornado in 2011 killed 161 people, injured more than 1000, destroyed more than 8000 structures, and caused $2.8 billion of property loss. Hurricanes occur predominantly on the United States East coast regions and along the coast of …


Comparative Study On Performance Accuracy Of Three Probe And Five Probe Flow Analysers For Wind Tunnel Testing, Akhila Rupesh Ms, J V Muruga Lal Jeyan Dr Jan 2021

Comparative Study On Performance Accuracy Of Three Probe And Five Probe Flow Analysers For Wind Tunnel Testing, Akhila Rupesh Ms, J V Muruga Lal Jeyan Dr

International Journal of Aviation, Aeronautics, and Aerospace

In the field of inviscid fluid flow studies, the theoretical concept has to be developed even more. In order to make it possible, it is very important to supplement the concepts with strong experimental results. While performing experimentation, various accepts of design can be determined with factors influencing the and also required modification can be recommended in a more systematic and economic manner. Also, the aim objective of the experiment is to extend the underlying theory and to produce new designs with improvements that can be great support to the advancement in technology. In experimental analysis, wind tunnels are used …


Analysis Of Turbulence Model Uncertainty For Canonical Flow Problems Including Shock Wave Boundary Layer Interaction Simulations, Aaron James Erb Jan 2021

Analysis Of Turbulence Model Uncertainty For Canonical Flow Problems Including Shock Wave Boundary Layer Interaction Simulations, Aaron James Erb

Doctoral Dissertations

"The purpose of this research is to present results of an uncertainty and sensitivity analysis study of commonly used turbulence models in Reynolds-Averaged Navier-Stokes (RANS) codes due to the epistemic uncertainty in closure coefficients for a set of turbulence model validation cases that represent the structure of several canonical flow problems. The study focuses on the analysis of a 2D zero pressure gradient flat plate, a 2D wall mounted hump, and an axisymmetric shock wave boundary layer interaction, all of which are well documented on the NASA Langley Research Center Turbulence Modeling Resource website. The Spalart-Allmaras (SA), the Wilcox (2006) …