Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Engineering

Mathematical Modeling: Finite Element Analysis And Computations Arising In Fluid Dynamics And Biological Applications, Jorge Reyes May 2023

Mathematical Modeling: Finite Element Analysis And Computations Arising In Fluid Dynamics And Biological Applications, Jorge Reyes

UNLV Theses, Dissertations, Professional Papers, and Capstones

It is often the case when attempting to capture real word phenomena that the resulting mathematical model is too difficult and even not feasible to be solved analytically. As a result, a computational approach is required and there exists many different methods to numerically solve models described by systems of partial differential equations. The Finite Element Method is one of them and it was pursued herein.This dissertation focuses on the finite element analysis and corresponding numerical computations of several different models. The first part consists of a study on two different fluid flow models: the main governing model of fluid …


High-Order Positivity-Preserving L2-Stable Spectral Collocation Schemes For The 3-D Compressible Navier-Stokes Equations, Johnathon Keith Upperman Jul 2021

High-Order Positivity-Preserving L2-Stable Spectral Collocation Schemes For The 3-D Compressible Navier-Stokes Equations, Johnathon Keith Upperman

Mathematics & Statistics Theses & Dissertations

High-order entropy stable schemes are a popular method used in simulations with the compressible Euler and Navier-Stokes equations. The strength of these methods is that they formally satisfy a discrete entropy inequality which can be used to guarantee L2 stability of the numerical solution. However, a fundamental assumption that is explicitly or implicitly used in all entropy stability proofs available in the literature for the compressible Euler and Navier-Stokes equations is that the thermodynamic variables (e.g., density and temperature) are strictly positive in the entire space{time domain considered. Without this assumption, any entropy stability proof for a numerical scheme …


Numerical Analysis And Fluid Flow Modeling Of Incompressible Navier-Stokes Equations, Tahj Hill May 2019

Numerical Analysis And Fluid Flow Modeling Of Incompressible Navier-Stokes Equations, Tahj Hill

UNLV Theses, Dissertations, Professional Papers, and Capstones

The Navier-Stokes equations (NSE) are an essential set of partial differential equations for governing the motion of fluids. In this paper, we will study the NSE for an incompressible flow, one which density ρ = ρ0 is constant.

First, we will present the derivation of the NSE and discuss solutions and boundary conditions for the equations. We will then discuss the Reynolds number, a dimensionless number that is important in the observations of fluid flow patterns. We will study the NSE at various Reynolds numbers, and use the Reynolds number to write the NSE in a nondimensional form.

We will …


Numerical Investigation Of Vortex Generator Flow Control For External-Compression Supersonic Inlets, Ezgihan Baydar May 2017

Numerical Investigation Of Vortex Generator Flow Control For External-Compression Supersonic Inlets, Ezgihan Baydar

Mechanical and Aerospace Engineering Dissertations

Vortex generators (VGs) within external-compression supersonic inlets for Mach 1.6 were investigated to determine their ability to increase total pressure recovery and reduce total pressure distortion. Ramp and vane-type VGs were studied. The geometric factors of interest included height, length, spacing, angle-of-incidence, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated numerically through the solution of the steady-state, Reynolds-averaged Navier-Stokes equations on multi-block, structured grids using the Wind-US flow solver. The inlet performance was characterized by the inlet total pressure recovery and the radial and circumferential total pressure distortion indices at the …


Design Consideration And Steady State Study Of Thrust Bearings In High Speed Subsonic Applications, Arvind Prabhakar May 2016

Design Consideration And Steady State Study Of Thrust Bearings In High Speed Subsonic Applications, Arvind Prabhakar

Mechanical and Aerospace Engineering Theses

Thrust bearings are required to perform at high speeds in various turbomachinery applications causing the nature of fluid flow within the bearings to be in high subsonic as well as supersonic regimes. The motivation of this research is to develop a bearing performance prediction model tailored for high subsonic speeds and large Reynolds numbers. The prime fluid characteristics studied in the thin film for predicting the bearing performance has been achieved by carefully considering inertial, viscous as well as compressible effects within the thin film fluid flow. Fluid inertia is a vital physical phenomenon that plays an important role in …


Desktop Computer Programs For Preliminary Design Of Transonic Compressor Rotors, Brian C. Mcdonald Mar 2001

Desktop Computer Programs For Preliminary Design Of Transonic Compressor Rotors, Brian C. Mcdonald

Theses and Dissertations

A need exist for correlation-based desktop computer programs that predict the flow through transonic compressor rotors with nominal computational time and cost. Modified versions of two desktop computer programs, BOWSHOCK and TRANSROTOR, were used to perform a parametric study on a modem compressor rotor. BOWSHOCK calculates the exit flow properties of a supersonic streamtube through a user-defined compressor rotor. TRANSROTOR calculates flow properties at three stations in a user-defined compressor stage. Modifications to TRANSROTOR included the incorporation of a recently published rotor loss model. Baseline and modified TRANSROTOR versions were run with two modern transonic compressor blades. Results were compared …


Computational Investigation Of Aeromechanical Hcf Effects In A Compressor Rotor, Andrew L. White Mar 2001

Computational Investigation Of Aeromechanical Hcf Effects In A Compressor Rotor, Andrew L. White

Theses and Dissertations

High-Cycle Fatigue is a major problem facing the gas turbine industry today. It has been investigated by many researchers, using many different methods. Due to its highly complex nature, designers still do not have adequate tools to accurately predict the onset of high-cycle fatigue. A three-dimensional Navier-Stokes program was used to perform a study of the unsteady aerodynamics on a compressor rotor. The effect of aerodynamic detuning on the forced response of a rotor blade was compared to a baseline tuned rotor case. Detuning consisted of a ten percent decrease in circumferential spacing between alternate pairs of blades. The high-cycle …


Numerical Prediction Of Turbulent Diffusion Flames Formed By Cylindrical Tube Injector, Ali S. Kheireddine Jul 1996

Numerical Prediction Of Turbulent Diffusion Flames Formed By Cylindrical Tube Injector, Ali S. Kheireddine

Mechanical & Aerospace Engineering Theses & Dissertations

This work summarizes numerical results for a diffusion flame formed from a cylindrical tube fuel injector, issuing gaseous fuel jet vertically in a quiescent atmosphere. Both pure fuels as well as fuel mixtures are examined. The primary objective is to predict the flame base height as a function of the jet velocity. A finite volume scheme is used to discretize the time-averaged Navier-Stokes equations for the reacting flow, resulting from the turbulent fuel jet motion. The turbulent stresses, and heat and mass fluxes are computed from the Reynolds stress turbulence model. A chemical kinetics model involving a two-step chemical reaction …


Simulation Of Active Control Of Asymmetric Flows Around Slender Pointed Forebodies, Hazem Sharaf El-Din Oct 1994

Simulation Of Active Control Of Asymmetric Flows Around Slender Pointed Forebodies, Hazem Sharaf El-Din

Mechanical & Aerospace Engineering Theses & Dissertations

At high angles of attack, the flowfield over slender forebodies becomes asymmetric with substantial side force, which may exceed the available control capability. The unsteady compressible Navier-Stokes equations are used to investigate the effectiveness of different active control methods to alleviate and possibly eliminate the flow asymmetry and the subsequent side force. Although the research work focuses on active control methods, a passive control method has been investigated. The implicit, Roe flux-difference splitting, finite volume scheme is used for the numerical computations. Both locally-conical and three-dimensional solutions of the Navier-Stokes equations are obtained.

The asymmetric flow over five-degree semi-apex angle …


Unsteady Flow Simulations About Moving Boundary Configurations Using Dynamic Domain Decomposition Techniques, Guan-Wei Yen Apr 1994

Unsteady Flow Simulations About Moving Boundary Configurations Using Dynamic Domain Decomposition Techniques, Guan-Wei Yen

Mechanical & Aerospace Engineering Theses & Dissertations

A computational method is developed to solve the coupled governing equations of an unsteady flowfield and those of rigid-body dynamics in six degrees-of-freedom (6-DOF). This method is capable of simulating the unsteady flowfields around multiple component configurations with at least one of the components in relative motion with respect to the others. Two of the important phenomena that such analyses can help us to understand are the unsteady aerodynamic interference and the boundary-induced component of such a flowfield. By hybridizing two dynamic domain decomposition techniques, the grid generation task is simplified, the computer memory requirement is reduced, and the governing …


Multigrid Acceleration Of Time-Dependent Solutions Of Navier-Stokes Equations, Sarafa Oladele Ibraheem Jan 1994

Multigrid Acceleration Of Time-Dependent Solutions Of Navier-Stokes Equations, Sarafa Oladele Ibraheem

Mechanical & Aerospace Engineering Theses & Dissertations

Recent progress in Computational Fluid Dynamics is encouraging scientists to look at fine details of flow physics of problems in which natural unsteady phenomena have hitherto been neglected. The acceleration methods that have proven very successful in steady state computations can be explored for time dependent computations. In this work, an efficient multigrid methods is developed to solve the time-dependent Euler and Navier-Stokes equations. The Beam-Warming ADI method is used as the base algorithm for time stepping calculations. Application of the developed algorithm proved very efficient in selected steady and unsteady test problems. For instance, the inherent unsteadiness present in …


Studies On Nonequilibrium Phenomena In Supersonic Chemically Reacting Flows, Rajnish Chandrasekhar Jul 1993

Studies On Nonequilibrium Phenomena In Supersonic Chemically Reacting Flows, Rajnish Chandrasekhar

Mechanical & Aerospace Engineering Theses & Dissertations

This study deals with a systematic investigation of nonequilibrium processes in supersonic combustion. The two-dimensional, elliptic Navier-Stokes equations are used to investigate supersonic flows with nonequilibrium chemistry and thermodynamics, coupled with radiation, for hydrogen-air systems. The explicit, unsplit MacCormack finite-difference scheme is used to advance the governing equations in time, until convergence is achieved.

For a basic understanding of the flow physics, premixed flows undergoing finite rate chemical reactions are investigated. Results obtained for specific conditions indicate that the radiative interactions vary substantially, depending on reactions involving HO$\sb2$ and NO species, and that this can have a noticeable influence on …


Navier-Stokes Simulation Of Quasi-Axisymmetric And Three-Dimensional Supersonic Vortex Breakdown, Hamdy A. Kandil Apr 1993

Navier-Stokes Simulation Of Quasi-Axisymmetric And Three-Dimensional Supersonic Vortex Breakdown, Hamdy A. Kandil

Mechanical & Aerospace Engineering Theses & Dissertations

Computational simulation of supersonic vortex breakdown is considered for internal and external flow applications. The interaction of a supersonic swirling flow with a shock wave in bounded and unbounded domains is studied. The problem is formulated using the unsteady, compressible, full Navier-Stokes equations which are solved using an implicit, flux-difference splitting, finite-volume scheme. Solutions are obtained for quasi-axisymmetric and three-dimensional flows. The quasi-axisymmetric solutions are obtained by forcing the components of the flowfield vector to be equal on two axial planes, which are in close proximity to each other. For the flow in a bounded domain, a supersonic swirling flow …


Hoph Bifurcation In Viscous, Low Speed Flows About An Airfoil With Structural Coupling, Mark J. Lutton Mar 1993

Hoph Bifurcation In Viscous, Low Speed Flows About An Airfoil With Structural Coupling, Mark J. Lutton

Theses and Dissertations

The locations of Hopf bifurcation points associated with the viscous, incompressible flow about a NACA 0012 airfoil with structural coupling are computed for very low Reynolds numbers (<2000). A semi-implicit, first-order-accurate time integration algorithm is employed to solve the stream function-vorticity form of the Navier-Stokes equations. The formulation models the inclusion of simple structural elements affixed to the airfoil and captures the resulting airfoil motion. The equations describing the airfoil motion are integrated in time using a fourth-order Runge-Kutta algorithm. The dissertation is divided into two parts. In part one, numerical experiments are performed in the laminar regime to determine if the structural model of the airfoil has an effect upon the location of the Hopf bifurcation point when compared with the fixed airfoil. Results are reported for a variety of structural characteristics, including variations of torsional and linear spring constants, inertial properties, structural coupling, and structural damping. The structure of the solution space is explored by means of phase plots. In part two, the Baldwin-Lomax turbulence model is implemented to model turbulent flow. A numerical effort is made to predict the onset of unsteady flow.


The Effects Of Viscosity On A Conically Derived Waverider, James A. Mundy Dec 1992

The Effects Of Viscosity On A Conically Derived Waverider, James A. Mundy

Theses and Dissertations

This study investigated the effects of the interaction between the viscous boundary layer and the shock wave produced by a Mach 10 inviscid optimized waverider. An implicit, Roe flux-splitting algorithm, developed by WL/FIMM, was used to solve the flow field. A validation for the inviscid version of the CFD algorithm was accomplished by comparing the numerical -data produced by the CFD code to the analytic results derived by Rasmussen, and by comparison to results of the explicit version of the same Roe flux-splitting code. The computational results compared favorably. The inviscid case studied using the implicit code produced results identical, …


Unsteady Euler And Navier-Stokes Computations Around Oscillating Delta Wing Including Dynamics, Ahmed Abd-El-Bar Ahmed Salman Apr 1992

Unsteady Euler And Navier-Stokes Computations Around Oscillating Delta Wing Including Dynamics, Ahmed Abd-El-Bar Ahmed Salman

Mechanical & Aerospace Engineering Theses & Dissertations

Unsteady flows around rigid or flexible delta wings with and without oscillating leading-edge flaps are considered. These unsteady flow problems are categorized under two classes of problems. In the first class, the wing motion is prescribed a priori and in the second class, the wing motion is obtained as a part of the solution. The formulation of the first class includes either the unsteady Euler or unsteady Navier-Stokes equations for the fluid dynamics and the unsteady linearized Navier-displacement (ND) equations for the grid deformation.

The problem of unsteady transonic flow past a bicircular-arc airfoil undergoing prescribed thickening-thinning oscillation is studied …


Prediction And Control Of Asymmetric Vortical Flows Around Slender Bodies Using Navier-Stokes Equations, Tin-Chee Wong Apr 1991

Prediction And Control Of Asymmetric Vortical Flows Around Slender Bodies Using Navier-Stokes Equations, Tin-Chee Wong

Mechanical & Aerospace Engineering Theses & Dissertations

Steady and unsteady vortex-dominated flows around slender bodies at high angles of attack are solved using the unsteady, compressible Navier-Stokes equations. An implicit upwind, finite-volume scheme is used for the numerical computations.

For supersonic flows past pointed bodies, the locally-conical flow assumption has been used. Asymmetric flows past five-degree semiapex cones using the thin-layer Navier-Stokes equations at different angles of attack, freestream Mach numbers, Reynolds numbers, grid fineness, computational domain size, sources of disturbances and cross-section shapes have been studied. The onset of flow asymmetry occurs when the relative incidence of pointed forebodies exceeds certain critical values. At these critical …


Navier-Stokes Simulations Of Flows About Complex Configurations Using Domain Decomposition Techniques, Kamran Fouladi-Semnani Jul 1990

Navier-Stokes Simulations Of Flows About Complex Configurations Using Domain Decomposition Techniques, Kamran Fouladi-Semnani

Mechanical & Aerospace Engineering Theses & Dissertations

An algorithm is developed to obtain numerical simulations of flows about complex configurations composed of multiple and nonsimilar components with arbitrary geometries. The algorithm uses a hybridization of the domain decomposition techniques for grid generation and to reduce the computer memory requirement. Three dimensional, Reynolds-averaged, unsteady, compressible, and complete Navier-Stokes equations are solved on each of the subdomains by a fully-vectorized, finite-volume, upwind-biased, approximately-factored, and multigrid method. The effect of Reynolds stresses is incorporated through an algebraic turbulence model with several modifications for interference flows. The present algorithm combines the advantages of an efficient, geometrically conservative, minimally and automatically dissipative …


Effects Of Nose Bluntness And Shock-Shock Interactions On Blunt Bodies In Viscous Hypersonic Flows, Dal J. Singh Jan 1989

Effects Of Nose Bluntness And Shock-Shock Interactions On Blunt Bodies In Viscous Hypersonic Flows, Dal J. Singh

Mechanical & Aerospace Engineering Theses & Dissertations

A numerical study has been conducted to investigate the effects of blunt leading edges on the viscous flow field around a hypersonic vehicle such as the proposed National Aero-Space Plane. Attention is focused on two specific regions of the flow field. Analysis of these flow regions is required to accurately predict the overall flow field as well as to get necessary information on localized zones of high pressure and intense heating.

The forebody is modeled by slender cones and ogives with spherically blunted nose. A combination of Navier-Stokes and parabolized Navier-Stokes equations is used to compute the flow field. The …


Numerical Simulation Of Turbulent Flows Past Three-Dimensional Cavities, Shivakumar Srinivasan Jul 1988

Numerical Simulation Of Turbulent Flows Past Three-Dimensional Cavities, Shivakumar Srinivasan

Mechanical & Aerospace Engineering Theses & Dissertations

Computations have been performed to simulate turbulent supersonic, transonic, and subsonic flows past three-dimensional deep, transitional, and shallow cavities. Simulation of these self sustained oscillatory flows has been generated through time accurate solutions of Reynolds averaged full Navier-Stokes equations using the explicit MacCormack scheme. The Reynolds stresses have been modeled, using the Baldwin-Lomax algebraic turbulence model with certain modifications. The computational results include instantaneous and time averaged flow properties everywhere in the computational domain. Time series analyses have been performed for the instantaneous pressure values on the cavity floor. Comparison with experimental data is made in terms of the mean …