Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Feedback Speed Control Of A Small Two-Stroke Internal Combustion Engine That Propels An Unmanned Aerial Vehicle, Paul D. Fjare Aug 2014

Feedback Speed Control Of A Small Two-Stroke Internal Combustion Engine That Propels An Unmanned Aerial Vehicle, Paul D. Fjare

UNLV Theses, Dissertations, Professional Papers, and Capstones

Unmanned aerial vehicles (UAV) require intelligent control of their power source. Small UAV are typically powered by electric motors or small two-stroke internal combustion (IC) engines. Small IC engines allow for longer flight times but are more difficult to control and cause significant ground noise. A hybrid operation that uses the engine at high altitudes and the electric motors at low altitudes is desired. This would allow for extended flight with acceptable ground noise levels. Since the engine can not be restarted in the air it must be able to remain at idle for an extended time without stalling. A …


Lightweight Uav Launcher, Ben Miller, Christian Valoria, Corinne Warnock, Jake Coutlee Jun 2014

Lightweight Uav Launcher, Ben Miller, Christian Valoria, Corinne Warnock, Jake Coutlee

Mechanical Engineering

This report discusses the design, construction, and testing of a lightweight, portable UAV launcher. There is a current need for a small team of soldiers to launch a US Marine Tier II UAV in a remote location without transport. Research was conducted into existing UAV launcher designs and the pros and cons of each were recorded. This research served as a basis for concept generation during the initial design development stage. It was required that the design weigh less than 110 lbs, occupy a smaller volume than 48" x 24" 18" in its collapsed state, be portable by a single …


Flight Testing Small Uavs For Aerodynamic Parameter Estimation, Adam Thomas Chase Jun 2014

Flight Testing Small Uavs For Aerodynamic Parameter Estimation, Adam Thomas Chase

Master's Theses

A flight data acquisition system was developed to aid unmanned vehicle designers in verifying the vehicle's design performance. The system is reconfigurable and allows the designer to choose the correct combination of complexity, risk, and cost for a given flight test. The designer can also reconfigure the system to meet packaging and integration requirements. System functionality, repeatbility, and accuracy was validated by collecting data during multiple flights of a radio-controlled aircraft. Future work includes sensor fusion, thrust prediction methods, stability and control derivative estimation, and growing Cal Poly's small-scale component aerodynamic database.


The Relationship Among Hfacs Levels And Analysis Of Human Factors In Unmanned And Manned Air Vehicles, Veysel Yesilbas Apr 2014

The Relationship Among Hfacs Levels And Analysis Of Human Factors In Unmanned And Manned Air Vehicles, Veysel Yesilbas

Engineering Management & Systems Engineering Theses & Dissertations

This dissertation analyzes the structural relationships among the Human Factors Accident Classification System levels for unmanned air vehicle and manned air vehicle accidents and the common relationships between unmanned air vehicle and manned air vehicle accident causes. The study acquired DOD HFACS accident classification data from 347 United States Air Force Class A accident reports for the years between 2000 and 2013.

The dissertation utilized a set of analysis that is considered to contribute substantially to the respective domain of the study. The correlations found among categorical levels were applied to HFACS taxonomy based on the Reason Model via path …