Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Design Of Elastic Metamaterials, Yu-Chi Su Dec 2015

Design Of Elastic Metamaterials, Yu-Chi Su

Open Access Dissertations

This study focused on the design and fabrication of a double negativity and three broadband single negativity elastic metamaterials using a 3D printer. We investigated dispersion curves and dynamic material properties of the metamaterials. Negative phase velocity in the double negativity metamaterial was also demonstrated.

For metamaterials with single negativity, three types of broadband metamaterials were designed from parametric studies. A comparison showed that using frame bending/stretching mode is more effective than applying beam bending mode to broaden bandgap. Furthermore, it is found that adding internal resonant components could enlarge the bandgap. The single negativity metamaterials were validated by numerical …


System Importance Measures: A New Approach To Resilient Systems-Of-Systems, Payuna Uday Apr 2015

System Importance Measures: A New Approach To Resilient Systems-Of-Systems, Payuna Uday

Open Access Dissertations

Resilience is the ability to withstand and recover rapidly from disruptions. While this attribute has been the focus of research in several fields, in the case of system-of-systems (SoSs), addressing resilience is particularly interesting and challenging. As infrastructure SoSs, such as power, transportation, and communication networks, grow in complexity and interconnectivity, measuring and improving the resilience of these SoSs is vital in terms of safety and providing uninterrupted services. ^ The characteristics of systems-of-systems make analysis and design of resilience challenging. However, these features also offer opportunities to make SoSs resilient using unconventional methods. In this research, we present a …


Design Of Low-Thrust Missions To Asteroids With Analysis Of The Missed-Thrust Problem, Frank E. Laipert Apr 2015

Design Of Low-Thrust Missions To Asteroids With Analysis Of The Missed-Thrust Problem, Frank E. Laipert

Open Access Dissertations

Small bodies in the Solar System, such as asteroids and dwarf planets, are ideal targets for electric propulsion missions because of the high delta-V required to rendezvous with these targets. We study trajectories to the asteroid belt, including a human mission to Ceres and a sample return mission to (216) Kleopatra, along with trajectories to the Jupiter Trojan asteroids. For the human mission to Ceres, payload masses of 75 Mg are achievable with a 11.7 MW nuclear electric propulsion system and an initial mass in LEO of 289 Mg. For low-thrust sample return missions to the main belt asteroid Kleopatra, …


Design Of Transfers From Earth-Moon L 1/L2 Libration Point Orbits To A Destination Object, Masaki Kakoi Apr 2015

Design Of Transfers From Earth-Moon L 1/L2 Libration Point Orbits To A Destination Object, Masaki Kakoi

Open Access Dissertations

Within the context of both manned and robotic spaceflight activities, orbits near the Earth-Moon L1 and L2 libration points could support lunar surface operations and serve as staging areas for future missions to near-Earth asteroids as well as Mars. In fact, an Earth-Moon L2 libration point orbit has been proposed as a potential hub for excursions to Mars as well as activities in support of planetary exploration. Yet, the dynamical environment within the Earth-Moon system is complex and, consequently, trajectory design in the vicinity of Earth-Moon L1 and L2 is nontrivial. Routine transfers between an Earth-Moon L1/L2 facility and Mars …


Maneuver Analysis For Spinning Thrusting Spacecraft And Spinning Tethered Spacecraft, Kaela Mae Martin Apr 2015

Maneuver Analysis For Spinning Thrusting Spacecraft And Spinning Tethered Spacecraft, Kaela Mae Martin

Open Access Dissertations

During axial thrusting of a spin-stabilized spacecraft undergoing orbital injections or control maneuvers, misalignments and center-of-mass offset create undesired body-fixed torques. The effects of the body-fixed torques, which in turn cause velocity pointing errors, can be reduced by ramping up (and then ramping down) the thruster. The first topic discussed in this thesis derives closed-form solutions for the angular velocity, Euler angles, inertial velocity, and inertial displacement solutions with nonzero initial conditions. Using the closed-form solutions, the effect of variations in the spin-axis moment of inertia and spin-rate on the spacecraft velocity pointing error are shown. The analytical solutions closely …


An Experimental Study On The Effects Of Blade Row Interactions On Aerodynamic Loss Mechanisms In A Multistage Compressor, Natalie Rochelle Smith Apr 2015

An Experimental Study On The Effects Of Blade Row Interactions On Aerodynamic Loss Mechanisms In A Multistage Compressor, Natalie Rochelle Smith

Open Access Dissertations

While the gas turbine engine has existed for nearly 80 years, much of the complex aerodynamics which governs compressor performance is still not well understood. The unsteady flow field consists of periodic blade row interactions from the wakes and potential fields of each blade and vane. Vane clocking is the relative circumferential indexing of adjacent vane rows with the same vane count, and it is one method to change blade row interactions. Though the potential of performance benefits with vane clocking is known, the driving flow physics have yet to be identified. ^ This research examines the effects of blade …


Assessment Of High-Fidelity Collision Models In The Direct Simulation Monte Carlo Method, Andrew Brian Weaver Apr 2015

Assessment Of High-Fidelity Collision Models In The Direct Simulation Monte Carlo Method, Andrew Brian Weaver

Open Access Dissertations

Advances in computer technology over the decades has allowed for more complex physics to be modeled in the DSMC method. Beginning with the first paper on DSMC in 1963, 30,000 collision events per hour were simulated using a simple hard sphere model. Today, more than 10 billion collision events can be simulated per hour for the same problem. Many new and more physically realistic collision models such as the Lennard-Jones potential and the forced harmonic oscillator model have been introduced into DSMC. However, the fact that computer resources are more readily available and higher-fidelity models have been developed does not …