Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Comparison Of Theoretical And Multi-Fidelity Optimum Aerostructural Solutions For Wing Design, Jeffrey D. Taylor, Douglas F. Hunsaker Sep 2021

Comparison Of Theoretical And Multi-Fidelity Optimum Aerostructural Solutions For Wing Design, Jeffrey D. Taylor, Douglas F. Hunsaker

Mechanical and Aerospace Engineering Student Publications and Presentations

As contemporary aerostructural research for aircraft design trends toward high-fidelity computational methods, aerostructural solutions based on theory are often neglected or forgotten. In fact, in many modern aerostructural wing optimization studies, the elliptic lift distribution is used as a benchmark in place of theoretical aerostructural solutions with more appropriate constraints. In this paper, we review several theoretical aerostructural solutions that could be used as benchmark cases for wing design studies, and we compare them to high-fidelity solutions with similar constraints. Solutions are presented for studies with 1) constraints related to the wing integrated bending moment, 2) constraints related to the …


Low-Fidelity Method For Rapid Aerostructural Optimisation And Design-Space Exploration Of Planar Wings, Jeffrey D. Taylor, Doug F. Hunsaker Apr 2021

Low-Fidelity Method For Rapid Aerostructural Optimisation And Design-Space Exploration Of Planar Wings, Jeffrey D. Taylor, Doug F. Hunsaker

Mechanical and Aerospace Engineering Student Publications and Presentations

During early phases of wing design, analytic and low-fidelity methods are often used to identify promising design concepts. In many cases, solutions obtained using these methods provide intuition about the design space that is not easily obtained using higher-fidelity methods. This is especially true for aerostructural design. However, many analytic and low-fidelity aerostructural solutions are limited in application to wings with specific planforms and weight distributions. Here, a numerical method for minimising induced drag with structural constraints is presented that uses approximations that apply to unswept planar wings with arbitrary planforms and weight distributions. The method is applied to the …


Characterization Of The Common Research Model Wing For Low-Fidelity Aerostructural Analysis, Jeffrey D. Taylor, Douglas F. Hunsaker Jan 2021

Characterization Of The Common Research Model Wing For Low-Fidelity Aerostructural Analysis, Jeffrey D. Taylor, Douglas F. Hunsaker

Mechanical and Aerospace Engineering Student Publications and Presentations

A characterization of the Common Research Model (CRM) wing for low-fidelity aerostructural optimization is presented. The geometric and structural properties are based on the CAD geometries and finite-element models for the CRM wing and the undeflected Common Research Model Wing (uCRM). Three approximations are presented for the elastic axis from previously-published studies on wing boxes similar to the uCRM, and approximations of the flexural and torsional rigidity are presented from a previously-published study using the uCRM wing. The characterization presented in this paper is intended to be used within low-fidelity aerostructural analysis tools to facilitate rapid design optimization and exploratory …


Sensitivity And Estimation Of Flying-Wing Aerodynamic, Propulsion, And Inertial Parameters Using Simulation, Jaden Thurgood, Douglas F. Hunsaker Jan 2021

Sensitivity And Estimation Of Flying-Wing Aerodynamic, Propulsion, And Inertial Parameters Using Simulation, Jaden Thurgood, Douglas F. Hunsaker

Mechanical and Aerospace Engineering Student Publications and Presentations

This paper explores the difficulties of aircraft system identification, specifically parameter estimation, for a rudderless aircraft. A white box method is used in conjunction with a nonlinear six degree-of-freedom aerodynamic model for the equations of motion in order to estimate 33 parameters that govern the aerodynamic, inertial, and propulsion forces within the mathematical model. The analysis is conducted in the time-domain of system identification. Additionally, all the parameters are estimated using a single flight rather than a series of shorter flights dedicated to estimating specific sets of parameters as is typically done. A final flight plan is developed with a …


Comparison Of Theoretical And High-Fidelity Aerostructural Solutions, Jeffrey D. Taylor, Douglas F. Hunsaker Jan 2021

Comparison Of Theoretical And High-Fidelity Aerostructural Solutions, Jeffrey D. Taylor, Douglas F. Hunsaker

Mechanical and Aerospace Engineering Student Publications and Presentations

As contemporary aerostructural research in aircraft design trends toward high-fidelity computational methods, aerostructural solutions based on theory are often neglected or forgotten. In fact, in many modern aerostructural wing optimization studies, the elliptic lift distribution is used as a benchmark in place of theoretical aerostructural solutions with more appropriate constraints. In this paper, we review several theoretical aerostructural solutions that could be used as benchmark cases for wing design studies, and we compare them to high-fidelity solutions with similar constraints. Solutions are presented for studies with 1) constraints related to the wing integrated bending moment, 2) constraints related to the …