Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering

Mechanical & Aerospace Engineering Theses & Dissertations

Computational fluid dynamics

Articles 1 - 5 of 5

Full-Text Articles in Engineering

A Study Of Asymmetric Supersonic Wind Tunnel Nozzle Design, Brittany A. Davis May 2022

A Study Of Asymmetric Supersonic Wind Tunnel Nozzle Design, Brittany A. Davis

Mechanical & Aerospace Engineering Theses & Dissertations

Achieving higher Mach numbers for private and commercial flight is a growing interest in the aerospace community. To qualify vehicles prior to flight, tests must be run in wind tunnels. Asymmetric wind tunnel nozzles are of continuing interest to the aerospace community due to their ability to change throat geometry, allowing for a range of Mach numbers to be achieved that encompasses all of the supersonic regime. The sliding block wind tunnel at Old Dominion University (ODU) is designed for a range of Mach numbers from about 1.8 to 3.5 but is limited to an upper limit of 2.8 by …


Development And Applications Of Adjoint-Based Aerodynamic And Aeroacoustic Multidisciplinary Optimization For Rotorcraft, Ramiz Omur Icke Jul 2021

Development And Applications Of Adjoint-Based Aerodynamic And Aeroacoustic Multidisciplinary Optimization For Rotorcraft, Ramiz Omur Icke

Mechanical & Aerospace Engineering Theses & Dissertations

Urban Air Mobility (UAM) is one of the most popular proposed solutions for alleviating traffic problems in populated areas. In this context, the proposed types of vehicles mainly consist of rotors and propellers powered by electric motors. However, those rotary-wing components can contribute excessively to noise generation. Therefore, a significant noise concern emerges due to urban air vehicles in or around residential areas. Reducing noise emitted by air vehicles is critically important to improve public acceptance of such vehicles for operations in densely populated areas.

Two main objectives of the present dissertation are: (1) to expand the multidisciplinary optimization to …


Uncertainty Propagation And Robust Design In Cfd Using Sensitivity Derivatives, Michele M. Putko Jul 2004

Uncertainty Propagation And Robust Design In Cfd Using Sensitivity Derivatives, Michele M. Putko

Mechanical & Aerospace Engineering Theses & Dissertations

This study investigates and demonstrates a methodology for uncertainty propagation and robust design in Computational Fluid Dynamics (CFD). Efficient calculation of both first- and second-order sensitivity derivatives is requisite in the proposed methodology. In this study, first- and second-order sensitivity derivatives of code output with respect to code input are obtained through an efficient incremental iterative approach.

An approximate statistical moment method for uncertainty propagation is first demonstrated on a quasi one-dimensional (1-D) Euler CFD code. This method is then extended to a two-dimensional (2-D) subsonic inviscid model airfoil problem. In each application, given statistically independent, random, normally distributed input …


Implementation And Testing Of Unsteady Reynolds-Averaged Navier-Stokes And Detached Eddy Simulation Using An Implicit Unstructured Multigrid Scheme, Juan A. Palaez Apr 2003

Implementation And Testing Of Unsteady Reynolds-Averaged Navier-Stokes And Detached Eddy Simulation Using An Implicit Unstructured Multigrid Scheme, Juan A. Palaez

Mechanical & Aerospace Engineering Theses & Dissertations

Investigation and development of the Detached Eddy Simulation (DES) technique for the computation of unsteady flows on unstructured grids are presented. The motivation of the research work is driven by the ultimate goal of predicting separated flows of aerodynamic importance, such as massive stall or flows over complex non-streamlined geometries. These cases, in which large regions of massively separated flow are present, represent a challenge for conventional Unsteady Reynolds-Averaged Navier-Stokes (URANS) models, that in many cases, cannot produce solutions accurate enough and/or fast enough for industrial design and applications. A Detached Eddy Simulation model is implemented and its performance compared …


Three-Dimensional Aerodynamic Design Optimization Using Discrete Sensitivity Analysis And Parallel Computing, Amidu Olawale Oloso Apr 1997

Three-Dimensional Aerodynamic Design Optimization Using Discrete Sensitivity Analysis And Parallel Computing, Amidu Olawale Oloso

Mechanical & Aerospace Engineering Theses & Dissertations

A hybrid automatic differentiation/incremental iterative method was implemented in the general purpose advanced computational fluid dynamics code (CFL3D Version 4.1) to yield a new code (CFL3D.ADII) that is capable of computing consistently discrete first order sensitivity derivatives for complex geometries. With the exception of unsteady problems, the new code retains all the useful features and capabilities of the original CFL3D flow analysis code. The superiority of the new code over a carefully applied method of finite-differences is demonstrated.

A coarse grain, scalable, distributed-memory, parallel version of CFL3D.ADII was developed based on "derivative stripmining". In this data-parallel approach, an identical copy …