Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Large Amplitude Pitching Of Supermaneuver Delta Wings Including Flow Control, Yahia A. Abdelhamid Jul 1999

Large Amplitude Pitching Of Supermaneuver Delta Wings Including Flow Control, Yahia A. Abdelhamid

Mechanical & Aerospace Engineering Theses & Dissertations

The unsteady, three-dimensional Navier-Stokes equations are solved to simulate and study the aerodynamic response of a delta wing undergoing large amplitude pitching motion up to 90° angle of attack. The primary model under consideration consists of a 76° swept, sharp-edged delta wing of zero thickness, initially at zero angle of attack. The freestream Mach number and Reynolds number are 0.3 and 0.45 × 106, respectively. The governing equations are solved time-accurately using the implicit, upwind, Roe flux-difference splitting, finite-volume scheme. Both laminar and turbulent flow solutions are investigated. In the laminar flow solutions, validation of the computational results is carried …


Jet Stability And Noise Computations Using Direct Numerical Simulation, Farouk Owis Jul 1999

Jet Stability And Noise Computations Using Direct Numerical Simulation, Farouk Owis

Mechanical & Aerospace Engineering Theses & Dissertations

The computations of axisymmetric jet noise with symmetric disturbances are investigated using the direct numerical simulation of the unsteady compressible Navier-Stokes equations. High order accurate numerical schemes are employed for the solution of the governing equations. The investigation shows that MacCormack schemes with operator splitting and minimum dispersion error can be used to predict noise radiated from subsonic and supersonic jets with low and high Reynolds numbers. In addition, different kinds of nonreflecting boundary conditions are used at the inflow and outflow boundaries. These boundary conditions include characteristic boundary conditions, buffer domain technique and perfectly matching layer method. The results …


Continuous Adjoint Sensitivity Analysis For Aerodynamic And Acoustic Optimization, Kaveh Ghayour Jan 1999

Continuous Adjoint Sensitivity Analysis For Aerodynamic And Acoustic Optimization, Kaveh Ghayour

Mechanical & Aerospace Engineering Theses & Dissertations

A gradient-based shape optimization methodology based on continuous adjoint sensitivities has been developed for two-dimensional steady Euler equations on unstructured meshes and the unsteady transonic small disturbance equation. The continuous adjoint sensitivities of the Helmholtz equation for acoustic applications have also been derived and discussed.

The highlights of the developments for the steady two-dimensional Euler equations are the generalization of the airfoil surface boundary condition of the adjoint system to allow a proper closure of the Lagrangian functional associated with a general cost functional and the results for an inverse problem with density as the prescribed target. Furthermore, it has …


Efficient Dynamic Unstructured Methods And Applications For Transonic Flows And Hypersonic Stage Separation, Xiaobing Luo Jan 1999

Efficient Dynamic Unstructured Methods And Applications For Transonic Flows And Hypersonic Stage Separation, Xiaobing Luo

Mechanical & Aerospace Engineering Theses & Dissertations

Relative-moving boundary problems have a wide variety of applications. They appear in staging during a launch process, store separation from a military aircraft, rotor-stator interaction in turbomachinery, and dynamic aeroelasticity.

The dynamic unstructured technology (DUT) is potentially a strong approach to simulate unsteady flows around relative-moving bodies, by solving time-dependent governing equations. The dual-time stepping scheme is implemented to improve its efficiency while not compromising the accuracy of solutions. The validation of the implicit scheme is performed on a pitching NACA0012 airfoil and a rectangular wing with low reduced frequencies in transonic flows. All the matured accelerating techniques, including the …


Studies Related To The Design Of A Magnetic Suspension And Balance System For An Ultra-High Reynolds Number Flow Facility, Oscar Magno Michael Gomeiz Jan 1999

Studies Related To The Design Of A Magnetic Suspension And Balance System For An Ultra-High Reynolds Number Flow Facility, Oscar Magno Michael Gomeiz

Mechanical & Aerospace Engineering Theses & Dissertations

The basic design principles for a magnetic suspension and balance system applied to the test section of an ultra-high Reynolds number facility are defined. The design of the cross-sectional area to be used in the test section is analyzed. The parameters of the permanent magnet to be used in the model inside the test section are investigated. The testing of magnetic fields at the center of a test pipe and validation of data by computer finite element analysis is described with the purpose of finding common results. The performance of the magnet configuration is evaluated with relation to the magnetic …


Computational Modeling Of Airborne Noise Demonstrated Via Benchmarks, Supersonic Jet, And Railway Barrier, Moumen Idres Jan 1999

Computational Modeling Of Airborne Noise Demonstrated Via Benchmarks, Supersonic Jet, And Railway Barrier, Moumen Idres

Mechanical & Aerospace Engineering Theses & Dissertations

In the last several years, there has been a growing demand for mobility to cope with the increasing population. All kinds of transportation have responded to this demand by expanding their networks and introducing new ideas. Rail transportation introduced the idea of high-speed trains and air transportation introduced the idea of high-speed civil transport (HSCT). In this expanding world, the noise legislation is felt to inhibit these plans. Accurate computational methods for noise prediction are in great demand.

In the current research, two computational methods are developed to predict noise propagation in air. The first method is based on the …


Setpoint Tracking Predictive Control In Chemical Processes Based On System Identification, Sinchai Chinvorarat Jan 1999

Setpoint Tracking Predictive Control In Chemical Processes Based On System Identification, Sinchai Chinvorarat

Mechanical & Aerospace Engineering Theses & Dissertations

A Kraft recovery boiler in a pulp-paper mill provides a means for recovery of the heat energy in spent liquor and recovery of inorganic chemicals while controlling emissions. These processes are carried out in a combined chemical recovery unit and steam boiler that is fired with concentrated black liquor and which produces molten smelt. Since the recovery boiler is considered to be an essential part of the pulp-paper mill in terms of energy resources, the performance of the recovery boiler has to be controlled to achieve the highest efficiency under unexpected disturbances.

This dissertation presents a new approach for combining …