Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Rotor-On-Rotor Aeroacoustic Interactions Of Multirotor In Hover, Eduardo Alvarez, Austin Schenk, Tyler Critchfield, Andrew Ning Jul 2020

Rotor-On-Rotor Aeroacoustic Interactions Of Multirotor In Hover, Eduardo Alvarez, Austin Schenk, Tyler Critchfield, Andrew Ning

Faculty Publications

Multirotor configurations introduce complicated aerodynamic and aeroacoustic interactions that must be considered during aircraft design. In this paper we explore two numerical methods to model the acoustic noise caused by aerodynamic rotor-on-rotor interactions of rotors in hover. The first method uses a conventional mesh-based unsteady Reynolds-average Navier-Stokes (URANS) solver, while the second consists of a meshless Lagrangian solver based on the viscous vortex particle method (VPM). Both methods are coupled with an aeroacoustics solver for tonal and broadband noise predictions. Noise predictions are validated for single and multi-rotor configurations, obtaining with the VPM a similar accuracy than URANS while being …


An Argument Against Satellite Resiliency: Simplicity In The Face Of Modern Satellite Design, Dax Linville [*], Robert A. Bettinger Apr 2020

An Argument Against Satellite Resiliency: Simplicity In The Face Of Modern Satellite Design, Dax Linville [*], Robert A. Bettinger

Faculty Publications

The US Air Force and the wider US government rely heavily on space-based capabilities in various orbital regimes to project national security and sovereignty. However, these capabilities are enabled by the design, launch, and operation of satellites produced with a design methodology that favors large, monolithic, and technologically exquisite space systems. Despite the ability for these satellites to provide enduring and resilient capabilities, they suffer from a woefully long acquisition process that debilitates any prospect of rapid satellite reconstitution in the event of a space war.


Peak Pressures On Low Rise Buildings: Cfd With Les Versus Full Scale And Wind Tunnel Measurements, Aly Mousaad Aly, Hamzeh Gol-Zaroudi Jan 2020

Peak Pressures On Low Rise Buildings: Cfd With Les Versus Full Scale And Wind Tunnel Measurements, Aly Mousaad Aly, Hamzeh Gol-Zaroudi

Faculty Publications

This paper focuses on the processes of wind flow in the atmospheric boundary layer, to produce realistic full-scale pressures for the design of low-rise buildings. CFD with LES turbulence closure is implemented on a scale 1:1 prototype building. A proximity study was executed computationally in CFD with LES that suggests new recommendations on the computational domain size, in front of a building model, apart from common RANS-based guidelines (e.g. COST and AIJ). Our findings suggest a location of the test building, different from existing guidelines, and the inflow boundary proximity influences pressure correlation and reproduction of peak loads. The CFD …


Unsteady Aerodynamic Analysis Of Wind Harvesting Aircraft, Judd Mehr, Eduardo Alvarez, Andrew Ning Jan 2020

Unsteady Aerodynamic Analysis Of Wind Harvesting Aircraft, Judd Mehr, Eduardo Alvarez, Andrew Ning

Faculty Publications

Airborne Wind Energy (AWE) technology aspires to provide increased options for wind energy harvesting. This includes increased feasibility for temporary and remote installations, as well as the ability to operate at wind speeds both lower and higher than traditional turbines. Additionally, the hope is to be able to produce these extensions of wind energy technology at a lower cost than conventional technologies. As AWE technology is still in its infancy, however, there is very little published information concerning the aerodynamic details of the technology. We have created a set of aerodynamic analysis tools which we apply to wind harvesting aircraft, …


Magslam: Aerial Simultaneous Localization And Mapping Using Earth's Magnetic Anomaly Field, Taylor N. Lee, Aaron J. Canciani Jan 2020

Magslam: Aerial Simultaneous Localization And Mapping Using Earth's Magnetic Anomaly Field, Taylor N. Lee, Aaron J. Canciani

Faculty Publications

Instances of spoofing and jamming of global navigation satellite systems (GNSSs) have emphasized the need for alternative navigation methods. Aerial navigation by magnetic map matching has been demonstrated as a viable GNSS‐alternative navigation technique. Flight test demonstrations have achieved accuracies of tens of meters over hour‐long flights, but these flights required accurate magnetic maps which are not always available. Magnetic map availability and resolution vary widely around the globe. Removing the dependency on prior survey maps extends the benefits of aerial magnetic navigation methods to small unmanned aerial systems (sUAS) at lower altitudes where magnetic maps are especially undersampled or …