Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering

Aerospace Engineering

Matlab

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Feasibility Of Cubesat Formation Flight Using Rotation To Achieve Differential Drag, Skyler M. Shuford Jun 2013

Feasibility Of Cubesat Formation Flight Using Rotation To Achieve Differential Drag, Skyler M. Shuford

Aerospace Engineering

This paper presents the results of a study conducted to understand the feasibility of CubeSat formation flight. The mechanism for separation and formation studied was differential drag, achieved by rotating the CubeSats to give them different cross-sectional areas. Intuitively, lower altitude orbits provide much higher separation effects. Although the most influential orbital effects occur with maximum and minimum cross-sectional areas, an attitude-controlled and a tumbling CubeSat may provide enough differential drag to meet separation requirements of a mission. Formation flight is possible, but due to the non-linearity of the system, gain scheduling may be the most effective method of long …


Computation Time Comparison Between Matlab And C++ Using Launch Windows, Tyler Andrews Jun 2012

Computation Time Comparison Between Matlab And C++ Using Launch Windows, Tyler Andrews

Aerospace Engineering

Processing speed between Matlab and C++ was compared by examining launch windows and handling large amounts of data found in pork chop plots. A compilation of code was generated in Matlab to produce the plots and an identical file was created in C++ that was then compiled and run in Matlab to plot the data. This file is known as a MEX-file. This report outlines some of the basics when working with MEX-files and the problems that face users. For Lambert’s solver, multi revolution cases were considered and some pork chop plots of single revolution trajectories were plotted. Three different …


Accelerating Lambert's Problem On The Gpu In Matlab, Nathan Parrish Jun 2012

Accelerating Lambert's Problem On The Gpu In Matlab, Nathan Parrish

Aerospace Engineering

The challenges and benefits of using the GPU to compute solutions to Lambert’s Problem are discussed. Three algorithms (Universal Variables, Gooding’s algorithm, and Izzo’s algorithm) were adapted for GPU computation directly within MATLAB. The robustness of each algorithm was considered, along with the speed at which it could be computed on each of three computers. All algorithms used were found to be completely robust. Computation time was measured for computation within a for-loop, a parfor-loop, and a call to the MATLAB command ‘arrayfun’ with gpuArray-type inputs. Then, a Universal Variables Lambert’s solver was written in CUDA and compiled for use …


Empennage Sizing And Aircraft Stability Using Matlab, Ryan C. Struett Jun 2012

Empennage Sizing And Aircraft Stability Using Matlab, Ryan C. Struett

Aerospace Engineering

No abstract provided.