Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Engineering

Development And Testing Of A Hydrogen Peroxide Injected Thrust Augmenting Nozzle For A Hybrid Rocket, Mark C. Heiner Dec 2019

Development And Testing Of A Hydrogen Peroxide Injected Thrust Augmenting Nozzle For A Hybrid Rocket, Mark C. Heiner

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

During a rocket launch, the point at which the most thrust is needed is at lift-off where the rocket is the heaviest since it is full of propellant. Unfortunately, this is also the point at which rocket engines perform the most poorly due to the relatively high atmospheric pressure at sea level. The Thrust Augmenting Nozzle (TAN) investigated in this paper provides a solution to this dilemma. By injecting extra propellant into the nozzle but downstream of the throat, the internal nozzle pressure is raised and the thrust is increased, and the nozzle efficiency, or specific impulse is potentially improved …


Revolution In Autonomous Orbital Navigation (Raon), Rachit Bhatia Dec 2019

Revolution In Autonomous Orbital Navigation (Raon), Rachit Bhatia

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Spacecraft navigation is a critical component of any space mission. Space navigation uses on-board sensors and other techniques to determine the spacecraft’s current position and velocity, with permissible accuracy. It also provides requisite information to navigate to a desired position, while following the desired trajectory. Developments in technology have resulted in new techniques of space navigation. However, inertial navigation systems have consistently been the bedrock for space navigation.

Recently, the successful space mission GOCE used on-board gravity gradiometer for mapping Earth’s gravitational field. This has motivated the development of new techniques like cold atom accelerometers, to create ultra-sensitive gravity gradiometers, …


Experimental Characterization Of Thermal-Hydraulic Performance Of A Microchannel Heat Exchanger For Waste Heat Recovery, James Yih, Hailei Wang Nov 2019

Experimental Characterization Of Thermal-Hydraulic Performance Of A Microchannel Heat Exchanger For Waste Heat Recovery, James Yih, Hailei Wang

Mechanical and Aerospace Engineering Faculty Publications

Given size and performance advantages, microchannel heat exchangers are becoming increasingly important for various energy recovery and conversion processes. In this study, detailed experimental measurements were conducted to characterize flow and heat transfer performance of a microchannel heat recovery unit (HRU) manufactured using standard photochemical etching and diffusion bonding processes. According to the global flow and temperature measurement, the HRU has delivered the predicted thermal performance under various oil and air flow rates. As expected, the heat transfer effectiveness varies between 88% and 98% for a given air and oil flow rates while it increases with air inlet temperature due …


Gelatine Cavity Dynamics Of High-Speed Sphere Impact, Akihito Kiyama, Mohammad M. Mansoor, Nathan B. Spiers, Yoshiyuki Tagawa, Tadd T. Truscott Oct 2019

Gelatine Cavity Dynamics Of High-Speed Sphere Impact, Akihito Kiyama, Mohammad M. Mansoor, Nathan B. Spiers, Yoshiyuki Tagawa, Tadd T. Truscott

Mechanical and Aerospace Engineering Faculty Publications

We investigate the impact and penetration of a solid sphere passing through gelatine at various impact speeds up to 143.2 m s-1 Tests were performed with several concentrations of gelatine. Impacts for low elastic Froude number Fre a ratio between inertia and gelatine elasticity, resulted in rebound. Higher Fre values resulted in penetration, forming cavities with prominent surface textures. The overall shape of the cavities resembles those observed in water-entry experiments, yet they appear in a different order with respect to increasing inertia: rebound, quasi-seal, deep-seal, shallow-seal and surface-seal. Remarkably, similar to the WeBo phase …


Secondary Electron Yield Measurements Of Carbon Nanotube Forests: Dependence On Morphology And Substrate, Brian Wood, Jordan Lee, Gregory Wilson, T. -C. Shen, Jr Dennison Aug 2019

Secondary Electron Yield Measurements Of Carbon Nanotube Forests: Dependence On Morphology And Substrate, Brian Wood, Jordan Lee, Gregory Wilson, T. -C. Shen, Jr Dennison

Journal Articles

Total, secondary, and backscatter electron yield data were taken with beam energies between 15 eV and 30 keV, in conjunction with energy emission data, to determine the extent of suppression of yield caused by carbon nanotube (CNT) forest coatings on substrates. CNT forests can potentially lower substrate yield due to both its inherently low-yield, low-atomic number (Z) carbon composition, and its bundled, high-aspect ratio structure. Rough surfaces, and in particular, surfaces with deep high-aspect-ratio voids, can suppress yields, as the electrons emitted from lower lying surfaces are recaptured by surface protrusions rather than escaping the near-surface region. Yields of multilayered …


Wireless Antenna Detection Of Electrostatic Discharge Events, Allen Andersen, Jr Dennison Aug 2019

Wireless Antenna Detection Of Electrostatic Discharge Events, Allen Andersen, Jr Dennison

Journal Articles

Wireless intraspacecraft communication technology is being developed for signal transfer on space missions to save weight and simplify the design. One consideration for this new technology is its interaction with space environmentinduced electrostatic discharges (ESDs). The short time scales of spacecraft ESD events result in broad frequency band signals that can interact with high-frequency wireless antennas. These interactions present a source of signal noise. However, they also present a possibility of in-flight wireless ESD monitoring. We present laboratory measurements of arcing on common spacecraft insulators using commercially available single-band 2.4-GHz and dual-band 2.4-/5.8-GHz Wi-Fi antennas. These wireless detections are shown …


Control And Stability Of Upper Stage Launch Vehicle With Hybrid Arc-Ignition Attitude Control System, Steven Russell Bennett Aug 2019

Control And Stability Of Upper Stage Launch Vehicle With Hybrid Arc-Ignition Attitude Control System, Steven Russell Bennett

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The Utah State University Propulsion Research Laboratory (USUPRL) has recently made significant developments in the area of hybrid rocket systems. This type of propulsion system incorporates a solid fuel and a gas or liquid oxidizer. Hybrid rocket systems are known for their inherent safety, reliability, and restart capability. Over the last several years, the USUPRL has successfully built and tested a hybrid rocket system comprising acrylonitrile butadiene styrene (ABS) plastic and gaseous oxygen (GOX). The system was demonstrated to be fully functional during ground, vacuum, and sub-orbital flight testing. Continuing forward, the USUPRL endeavors to extend the capabilities of this …


Multiple Imu Sensor Fusion For Suas Navigation And Photogrammetry, Matthew Givens Aug 2019

Multiple Imu Sensor Fusion For Suas Navigation And Photogrammetry, Matthew Givens

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Inertial measurement units (IMUs) are devices that sense accelerations and angular rates in 3D so that vehicles and other devices can estimate their orientations, positions, and velocities. While traditionally large, heavy, and costly, using mechanical gyroscopes and stabilized platforms, the recent development of micro-electromechanical sensor (MEMS) IMUs that are small, light, and inexpensive has led to their adoption in many everyday systems such as cell phones, video game controllers, and commercial drones. MEMS IMUs, despite their advantages, have major drawbacks when it comes to accuracy and reliability. The idea of using more than one of these sensors in an array, …


Angles-Only Ekf Navigation For Hyperbolic Flybys, Iggy Matheson Aug 2019

Angles-Only Ekf Navigation For Hyperbolic Flybys, Iggy Matheson

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Space travelers in science fiction can drop out of hyperspace and make a pinpoint landing on any strange new world without stopping to get their bearings, but real-life space navigation is an art characterized by limited information and complex mathematics that yield no easy answers. This study investigates, for the first time ever, what position and velocity estimation errors can be expected by a starship arriving at a distant star - specifically, a miniature probe like those proposed by the Breakthrough Starshot initiative arriving at Proxima Centauri. Such a probe consists of nothing but a small optical camera and a …


How Vision Governs The Collective Behaviour Of Dense Cycling Pelotons, J. Belden, Mohammad M. Mansoor, A. Hellum, S. R. Rahman, A. Meyer, C. Pease, J. Pacheco, S. Koziol, Tadd T. Truscott Jul 2019

How Vision Governs The Collective Behaviour Of Dense Cycling Pelotons, J. Belden, Mohammad M. Mansoor, A. Hellum, S. R. Rahman, A. Meyer, C. Pease, J. Pacheco, S. Koziol, Tadd T. Truscott

Mechanical and Aerospace Engineering Faculty Publications

In densely packed groups demonstrating collective behaviour, such as bird flocks, fish schools or packs of bicycle racers (cycling pelotons), information propagates over a network, with individuals sensing and reacting to stimuli over relatively short space and time scales. What remains elusive is a robust, mechanistic understanding of how sensory system properties affect interactions, information propagation and emergent behaviour. Here, we show through direct observation how the spatio-temporal limits of the human visual sensory system govern local interactions and set the network structure in large, dense collections of cyclists. We found that cyclists align in patterns within a ± 30° …


A Multi-Fidelity Prediction Of Aerodynamic And Sonic Boom Characteristics Of The Jaxa Wing Body, Forrest L. Carpenter, Paul G. A. Cizmas, Christian R. Bolander, Ted N. Giblette, Doug F. Hunsaker Jun 2019

A Multi-Fidelity Prediction Of Aerodynamic And Sonic Boom Characteristics Of The Jaxa Wing Body, Forrest L. Carpenter, Paul G. A. Cizmas, Christian R. Bolander, Ted N. Giblette, Doug F. Hunsaker

Mechanical and Aerospace Engineering Student Publications and Presentations

This paper presents a detailed comparison between the linear panel solver PANAIR A502 and the in-house Navier–Stokes solver UNS3D for a supersonic low-boom geometry. The high-fidelity flow solver was used to predict both the inviscid and laminar flow about the aircraft geometry. The JAXA wing body was selected as the supersonic low-boom geometry for this study. A comparison of the undertrack near-field pressure signatures showed good agreement between the three levels of model fidelity along the first 0.8L of the signature. Large oscillations in the PANAIR results were observed. The PANAIR discrepancies were traced back to violations of the …


Comparison Of Induced And Parasitic Drag On Wings With Minimum Induced Drag, Sarah A. Abdel-Motaleb May 2019

Comparison Of Induced And Parasitic Drag On Wings With Minimum Induced Drag, Sarah A. Abdel-Motaleb

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

Minimizing the induced drag for steady level flight is a variational problem that requires solving for the optimum lift distribution given a set of design constraints. From lifting-line theory, minimizing the induced drag is, in part, achieved by varying the Fourier coefficients used to describe the section lift. The elliptic lift distribution minimizes the induced drag for a wing with fixed weight and wingspan by setting all but the first coefficient to zero. If wingspan is allowed to vary, a negative third Fourier coefficient is utilized to reach an optimum lift distribution that further reduces the induced drag for stress-limited …


Development And Testing Of Additively Manufactured Aerospike Nozzles For Small Satellite Propulsion, Isaac W. Armstrong May 2019

Development And Testing Of Additively Manufactured Aerospike Nozzles For Small Satellite Propulsion, Isaac W. Armstrong

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Automatic altitude compensation has been a holy grail of rocket propulsion for decades. Current state-of-the-art bell nozzles see large performance decreases at low altitudes, limiting rocket designs, shrinking payloads, and overall increasing costs. Aerospike nozzles are an old idea from the 1960’s that provide superior altitude-compensating performance and enhanced performance in vacuum, but have survivability issues that have stopped their application in satellite propulsion systems. A growing need for CubeSat propulsion systems provides the impetus to study aerospike nozzles in this application. This study built two aerospike nozzles using modern 3D metal printing techniques to test aerospikes at a size …


Investigation Of Thermoplastic Polymers And Their Blends For Use In Hybrid Rocket Combustion, Spencer D. Mathias May 2019

Investigation Of Thermoplastic Polymers And Their Blends For Use In Hybrid Rocket Combustion, Spencer D. Mathias

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

This thesis set out to find a blend of thermoplastics that had better combustion properties than the current ABS (acrylonitrile butadiene styrene) plastic or “Lego TM plastic” used by Utah State University. The current work is in an effort to eliminate toxic propellants from small space applications. High and low density polyethylene plastics were used because they are common plastic waste items. In this way rocket fuel can be made from these items to reduce the waste found in landfills. Three plastics were considered for replacement and as mixture components with the ABS plastic, namely low and high density polyethylene, …


Reconstruction Of Attenuated Hybrid Rocket Motor Chamber Pressure Signals Using Maximum Likelihood Estimation And Optimal Deconvolution, Evan M. Zelesnik May 2019

Reconstruction Of Attenuated Hybrid Rocket Motor Chamber Pressure Signals Using Maximum Likelihood Estimation And Optimal Deconvolution, Evan M. Zelesnik

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

Chamber pressure, as it develops during rocket combustion, strongly correlates with many of the internal motor ballistics, including combustion stability, fuel regression rate, and mass flow. Chamber pressure is also an essential measurement for calculating achieved thrust coefficient and characteristic velocity. Due to the combustion environment hostility, sensing chamber pressure with high-fidelity presents a difficult measurement problem, especially for solid and hybrid rocket systems where combustion by-products contain high amounts of carbon and other sooty materials. These contaminants tend to deposit within the pneumatic tubing used to transmit pressure oscillations from the thrust chamber to the sensing transducer. Partially clogged …


A High Magnification Uv Lens For High Temperature Optical Strain Measurements, Robert S. Hansen, Trevor J. Bird, Ren Voie, Katharine Z. Burn, Ryan B. Berke Apr 2019

A High Magnification Uv Lens For High Temperature Optical Strain Measurements, Robert S. Hansen, Trevor J. Bird, Ren Voie, Katharine Z. Burn, Ryan B. Berke

Mechanical and Aerospace Engineering Faculty Publications

Digital Image Correlation (DIC) measures full-field strains by tracking displacements of a specimen using images taken before and after deformation. At high temperatures, materials emit light in the form of blackbody radiation, which can interfere with DIC images. To screen out that light, DIC has been recently adapted by using ultraviolet (UV) range cameras, lenses, and filters. Before now, UV-DIC had been demonstrated at the centimeter scale using commercially available UV lenses and filters. Commercial high-magnification lenses using visible light have also been used for DIC. However, there is currently no commercially available high-magnification lens that will allow images to …


Water Walking As A New Mode Of Free Surface Skipping, Randy Craig Hurd, Jesse Belden, Allan F. Bower, Sean Holekamp, Michael A. Jandron, Tadd T. Truscott Apr 2019

Water Walking As A New Mode Of Free Surface Skipping, Randy Craig Hurd, Jesse Belden, Allan F. Bower, Sean Holekamp, Michael A. Jandron, Tadd T. Truscott

Mechanical and Aerospace Engineering Faculty Publications

Deformable elastomeric spheres are evaluated experimentally as they skip multiple times over a lake surface. Some spheres are embedded with small inertial measurement units to measure the acceleration experienced during water surface impact. A model for multiple impact events shows good agreement between measured acceleration, number of skipping events and distanced traveled. The experiment reveals a new mode of skipping, “water walking”, which is observed for relatively soft spheres impacting at low impact angles. The mode occurs when the sphere gains significant angular velocity over the first several impacts, causing the sphere to maintain a deformed, oblong shape. The behavior …


A Procedure For The Calculation Of The Perceived Loudness Of Sonic Booms, Christian R. Bolander, Douglas F. Hunsaker, Hao Shen, Forrest L. Carpenter Jan 2019

A Procedure For The Calculation Of The Perceived Loudness Of Sonic Booms, Christian R. Bolander, Douglas F. Hunsaker, Hao Shen, Forrest L. Carpenter

Mechanical and Aerospace Engineering Student Publications and Presentations

Implementing a method to calculate the human ear’s perceived loudness of a sonic boom requires consulting scattered literature with varying amounts of detail. This work describes a comprehensive implementation of Stevens’ Mark VII in Python, called PyLdB. References to literary works are included in enough detail so that the reader could use this work as a guide to implement the Mark VII algorithm. The details behind the mathematics of the Mark VII algorithm are included and PyLdB is used to calculate the perceived loudness of an example pressure signature. PyLdB is benchmarked against a widely used and validated code by …