Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Optimal Aeroelastic Vehicle Sensor Placement For Root Migration Flight Control Applications, Abdul Ghafoor Al-Shenhabi Jul 2001

Optimal Aeroelastic Vehicle Sensor Placement For Root Migration Flight Control Applications, Abdul Ghafoor Al-Shenhabi

Mechanical & Aerospace Engineering Theses & Dissertations

An important step in control design for elastic systems is the determination of the number and location of control system components, namely sensors. The number and placement of sensors can be critical to the robust functioning of active control systems, especially when the system of interest is a large high-speed aeroelastic vehicle. The position of the sensors affects not only system stability, but also the performance of the closed-loop system. In this dissertation, a new approach for sensor placement in the integrated rigid and vibrational control of flexible aircraft structures is developed. Traditional rigid-body augmentation objectives are addressed indirectly through …


On Multifunctional Collaborative Methods In Engineering Science, Jonathan B. Ransom Sr. Apr 2001

On Multifunctional Collaborative Methods In Engineering Science, Jonathan B. Ransom Sr.

Mechanical & Aerospace Engineering Theses & Dissertations

Engineers are challenged to produce better designs in less time and for less cost. Hence, to investigate novel and revolutionary design concepts, accurate, high-fidelity data must be assimilated rapidly into the design, analysis and simulation process. This data assimilation should consider diverse mathematical modeling and multi-discipline interactions necessitated by concepts exploiting advanced materials and structures. Integrated high-fidelity methods with diverse engineering applications provide the enabling technologies to assimilate these high-fidelity, multi-disciplinary data rapidly at an early stage in the design. These integrated methods must be multifunctional, collaborative and applicable to the general field of engineering science and mechanics.

Multifunctional methodologies …


Finite Element Analysis And Active Control For Nonlinear Flutter Of Composite Panels Under Yawed Supersonic Flow, Khaled Abdel-Motagaly Jan 2001

Finite Element Analysis And Active Control For Nonlinear Flutter Of Composite Panels Under Yawed Supersonic Flow, Khaled Abdel-Motagaly

Mechanical & Aerospace Engineering Theses & Dissertations

A coupled structural-electrical modal finite element formulation for composite panels with integrated piezoelectric sensors and actuators is presented for nonlinear panel flutter suppression under yawed supersonic flow. The first-order shear deformation theory for laminated composite plates, the von Karman nonlinear strain-displacement relations for large deflection response, the linear piezoelectricity constitutive relations, and the first-order piston theory of aerodynamics are employed. Nonlinear equations of motion are derived using the three-node triangular MIN3 plate element. Additional electrical degrees of freedom are introduced to model piezoelectric sensors and actuators. The system equations of motion are transformed and reduced to a set of nonlinear …


An Integrated Risk Analysis Methodology In A Multidisciplinary Design Environment, Katrina R. Hampton Jan 2001

An Integrated Risk Analysis Methodology In A Multidisciplinary Design Environment, Katrina R. Hampton

Engineering Management & Systems Engineering Theses & Dissertations

Design of complex, one-of-a-kind systems, such as space transportation systems, is characterized by high uncertainty and, consequently, high risk. It is necessary to account for these uncertainties in the design process to produce systems that are more reliable. Systems designed by including uncertainties and managing them, as well, are more robust and less prone to poor operations as a result of parameter variability.

The quantification, analysis and mitigation of uncertainties are challenging tasks as many systems lack historical data. In such an environment, risk or uncertainty quantification becomes subjective because input data is based on professional judgment. Additionally, there are …


Nonlinear Response And Fatigue Estimation Of Surface Panels To White And Non-White Gaussian Random Excitations, Jean-Michel Dhainaut Jan 2001

Nonlinear Response And Fatigue Estimation Of Surface Panels To White And Non-White Gaussian Random Excitations, Jean-Michel Dhainaut

Mechanical & Aerospace Engineering Theses & Dissertations

In stochastic structural dynamics, the majority of analyses have dealt with linear structures under stationary, Gaussian, and band-limited white noise excitations. Although these simplifying assumptions may be justified, in many processes experimental data have shown quite frequently the non-stationary and non-Gaussian characteristics of the loads. An efficient finite element modal formulation has recently been developed to extend the analysis to nonlinear structural responses. Laminated plate theory and von Karman large displacement relations are used to derive the nonlinear equations of motion for an arbitrarily laminated composite panel subjected to combined acoustic and thermal loads. The nonlinear equations of motion in …