Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

High-Order Positivity-Preserving L2-Stable Spectral Collocation Schemes For The 3-D Compressible Navier-Stokes Equations, Johnathon Keith Upperman Jul 2021

High-Order Positivity-Preserving L2-Stable Spectral Collocation Schemes For The 3-D Compressible Navier-Stokes Equations, Johnathon Keith Upperman

Mathematics & Statistics Theses & Dissertations

High-order entropy stable schemes are a popular method used in simulations with the compressible Euler and Navier-Stokes equations. The strength of these methods is that they formally satisfy a discrete entropy inequality which can be used to guarantee L2 stability of the numerical solution. However, a fundamental assumption that is explicitly or implicitly used in all entropy stability proofs available in the literature for the compressible Euler and Navier-Stokes equations is that the thermodynamic variables (e.g., density and temperature) are strictly positive in the entire space{time domain considered. Without this assumption, any entropy stability proof for a numerical scheme …


Reverse Engineering Of Aircraft Wing Data Using A Partial Differential Equation Surface Model, Jacalyn M. Huband Jul 1997

Reverse Engineering Of Aircraft Wing Data Using A Partial Differential Equation Surface Model, Jacalyn M. Huband

Mathematics & Statistics Theses & Dissertations

Reverse engineering is a multi-step process used in industry to determine a production representation of an existing physical object. This representation is in the form of mathematical equations that are compatible with computer-aided design and computer-aided manufacturing (CAD/CAM) equipment. The four basic steps to the reverse engineering process are data acquisition, data separation, surface or curve fitting, and CAD/CAM production. The surface fitting step determines the design representation of the object, and thus is critical to the success or failure of the reverse engineering process. Although surface fitting methods described in the literature are used to model a variety of …


The Solution Of A Singular Integral Equation Arising From A Lifting Surface Theory For Rotating Blades, Mark H. Dunn Jul 1991

The Solution Of A Singular Integral Equation Arising From A Lifting Surface Theory For Rotating Blades, Mark H. Dunn

Mathematics & Statistics Theses & Dissertations

A technique is presented for the solution of a linear, two dimensional, singular, Volterra integral equation of the first kind. The integral equation, originally developed by Farassat and Myers, is derived from the basic equations of linearized acoustics and models the lifting force experienced by an infinitesimally thin surface moving tangent to itself. As a particular application, the motion of modern high speed aircraft propellers (Advanced Technology Propellers) is considered. The unknown propeller blade surface pressure distribution is approximated by a piecewise constant function and the integral equation is solved numerically by the method of collocation. Certain simplifying assumptions applied …


An Extension Of Essentially Non-Oscillatory Shock-Capturing Schemes To Multi-Dimensional Systems Of Conservation Laws, Jay Casper Jan 1990

An Extension Of Essentially Non-Oscillatory Shock-Capturing Schemes To Multi-Dimensional Systems Of Conservation Laws, Jay Casper

Mathematics & Statistics Theses & Dissertations

In recent years, a class of numerical schemes for solving hyperbolic partial differential equations has been developed which generalizes the first-order method of Godunov to arbitrary order of accuracy. High-order accuracy is obtained, wherever the solution is smooth, by an essentially non-oscillatory (ENO) piecewise polynomial reconstruction procedure, which yields high-order pointwise information from the cell averages of the solution at a given point in time. When applied to piecewise smooth initial data, this reconstruction enables a flux computation that provides a time update of the solution which is of high-order accuracy, wherever the function is smooth, and avoids a Gibbs …