Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering

Missouri University of Science and Technology

Discrete Time Systems

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Weighting Matrix Design For Robust Monotonic Convergence In Norm Optimal Iterative Learning Control, Douglas A. Bristow Jun 2008

Weighting Matrix Design For Robust Monotonic Convergence In Norm Optimal Iterative Learning Control, Douglas A. Bristow

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In this paper we examine the robustness of norm optimal ILC with quadratic cost criterion for discrete-time, linear time-invariant, single-input single-output systems. A bounded multiplicative uncertainty model is used to describe the uncertain system and a sufficient condition for robust monotonic convergence is developed. We find that, for sufficiently large uncertainty, the performance weighting can not be selected arbitrarily large, and thus overall performance is limited. To maximize available performance, a time-frequency design methodology is presented to shape the weighting matrix based on the initial tracking error. The design is applied to a nanopositioning system and simulation results are presented.


Near Optimal Output-Feedback Control Of Nonlinear Discrete-Time Systems In Nonstrict Feedback Form With Application To Engines, Peter Shih, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier Jan 2007

Near Optimal Output-Feedback Control Of Nonlinear Discrete-Time Systems In Nonstrict Feedback Form With Application To Engines, Peter Shih, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier

Electrical and Computer Engineering Faculty Research & Creative Works

A novel reinforcement-learning based output-adaptive neural network (NN) controller, also referred as the adaptive-critic NN controller, is developed to track a desired trajectory for a class of complex nonlinear discrete-time systems in the presence of bounded and unknown disturbances. The controller includes an observer for estimating states and the outputs, critic, and two action NNs for generating virtual, and actual control inputs. The critic approximates certain strategic utility function and the action NNs are used to minimize both the strategic utility function and their outputs. All NN weights adapt online towards minimization of a performance index, utilizing gradient-descent based rule. …


Optimal Impulse Control Of Systems With Control Constraints And Application To Hiv Treatment, Vivek Yadav, S. N. Balakrishnan Jan 2006

Optimal Impulse Control Of Systems With Control Constraints And Application To Hiv Treatment, Vivek Yadav, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In this paper, conditions for optimal impulse control of an impulsive system with constraints on control are derived. These hold for a system whose states can be changed instantaneously at discrete times with impulses while a continuous control is being applied between those times. The conditions derived are applied to the problem of optimal HIV treatment. Simulation results are presented to show the treatment procedure. The results obtained show that the intervention method developed leads to good results.


Neural Network-Based Output Feedback Controller For Lean Operation Of Spark Ignition Engines, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier, Jonathan B. Vance, Pingan He Jan 2006

Neural Network-Based Output Feedback Controller For Lean Operation Of Spark Ignition Engines, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier, Jonathan B. Vance, Pingan He

Electrical and Computer Engineering Faculty Research & Creative Works

Spark ignition (SI) engines running at very lean conditions demonstrate significant nonlinear behavior by exhibiting cycle-to-cycle dispersion of heat release even though such operation can significantly reduce NOx emissions and improve fuel efficiency by as much as 5-10%. A suite of neural network (NN) controller without and with reinforcement learning employing output feedback has shown ability to reduce the nonlinear cyclic dispersion observed under lean operating conditions. The neural network controllers consists of three NN: a) A NN observer to estimate the states of the engine such as total fuel and air; b) a second NN for generating virtual input; …


Adaptive Critic-Based Neural Network Controller For Uncertain Nonlinear Systems With Unknown Deadzones, Pingan He, Jagannathan Sarangapani, S. N. Balakrishnan Jan 2002

Adaptive Critic-Based Neural Network Controller For Uncertain Nonlinear Systems With Unknown Deadzones, Pingan He, Jagannathan Sarangapani, S. N. Balakrishnan

Electrical and Computer Engineering Faculty Research & Creative Works

A multilayer neural network (NN) controller in discrete-time is designed to deliver a desired tracking performance for a class of nonlinear systems with input deadzones. This multilayer NN controller has an adaptive critic NN architecture with two NNs for compensating the deadzone nonlinearity and a third NN for approximating the dynamics of the nonlinear system. A reinforcement learning scheme in discrete-time is proposed for the adaptive critic NN deadzone compensator, where the learning is performed based on a certain performance measure, which is supplied from a critic. The adaptive generating NN rejects the errors induced by the deadzone whereas a …