Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 26 of 26

Full-Text Articles in Engineering

Coalescence Speed Of Two Equal-Sized Nanobubbles, Eric Bird, Jun Zhou, Zhi Liang Dec 2020

Coalescence Speed Of Two Equal-Sized Nanobubbles, Eric Bird, Jun Zhou, Zhi Liang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In This Work, We Use Molecular Dynamics (MD) Simulations Coupled with Continuum-Based Theoretical Analysis to Study the Coalescence Dynamics of Two Equal-Sized Nanobubbles (NBs). We First Derive a Governing Equation for the Evolution of the Capillary Bridge Radius between Two Coalescing NBs from the Axisymmetric Navier-Stokes Equation. to Verify the Prediction from the Governing Equation, We Carry Out MD Simulations of the Coalescence of Two NBs in a Lennard-Jones Fluid System and Directly Measure the Bridge Radius, Rb, as a Function of Time, T. by Varying the Bubble Diameter, We Change the NB Ohnesorge Number from 0.46 to 0.33. in …


Efficient Yield Estimation Of Multiband Patch Antennas By Polynomial Chaos-Based Kriging, Leifur Leifsson, Xiaosong Du, Slawomir Koziel Nov 2020

Efficient Yield Estimation Of Multiband Patch Antennas By Polynomial Chaos-Based Kriging, Leifur Leifsson, Xiaosong Du, Slawomir Koziel

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Yield estimation of antenna systems is important to check their robustness with respect to the uncertain sources. Since direct Monte Carlo sampling of accurate physics-based models can be computationally intensive, this work proposes the use of the polynomial chaos–Kriging (PC-Kriging) metamodeling method for fast yield estimation of multiband patch antennas. PC-Kriging integrates the polynomial chaos expansion (PCE) as the trend function of Kriging metamodel since the PCE is good at capturing the function tendency and Kriging is good at matching the observations at training points. The PC-Kriging method is demonstrated on two analytical cases and two multiband patch antenna cases …


Maximum Evaporating Flux Of Molecular Fluids From A Planar Liquid Surface, Eric Bird, Zhi Liang Oct 2020

Maximum Evaporating Flux Of Molecular Fluids From A Planar Liquid Surface, Eric Bird, Zhi Liang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In This Work, We Use the Kinetic Theory of Gases (KTG) to Develop a Theoretical Model to Understand the Role of Internal Motions of Molecules on the Maximum Evaporation Flux from a Planar Liquid Surface. the Kinetic Theory is Applied to Study the Evaporation of Molecular Fluids into a Vacuum and Predict the Dimensionless Maximum Evaporation Flux (JR,max, I.e., the Ratio of the Maximum Evaporation Flux to the Molar Flux Emitted from a Liquid Surface). the Key Assumptions Regarding the Velocity Distribution Function (VDF) of Polyatomic Molecules in the Highly Nonequilibrium Vapor Near the Evaporating Surface Are Validated by the …


Application Of Quantum-Markov Open System Models To Human Cognition And Decision, Jerome Busemeyer, Qizi Zhang, S. N. Balakrishnan, Zheng Wang Sep 2020

Application Of Quantum-Markov Open System Models To Human Cognition And Decision, Jerome Busemeyer, Qizi Zhang, S. N. Balakrishnan, Zheng Wang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Markov processes, such as random walk models, have been successfully used by cognitive and neural scientists to model human choice behavior and decision time for over 50 years. Recently, quantum walk models have been introduced as an alternative way to model the dynamics of human choice and confidence across time. Empirical evidence points to the need for both types of processes, and open system models provide a way to incorporate them both into a single process. However, some of the constraints required by open system models present challenges for achieving this goal. The purpose of this article is to address …


Thermal Transport Across The Interface Between Liquid N-Dodecane And Its Own Vapor: A Molecular Dynamics Study, Eric Bird, Jesus Gutierrez Plascencia, Zhi Liang May 2020

Thermal Transport Across The Interface Between Liquid N-Dodecane And Its Own Vapor: A Molecular Dynamics Study, Eric Bird, Jesus Gutierrez Plascencia, Zhi Liang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

There Are Two Possible Thermal Transport Mechanisms at Liquid-Gas Interfaces, Namely, Evaporation/condensation (I.e., Heat Transfer by Liquid-Vapor Phase Change at Liquid Surfaces) and Heat Conduction (I.e., Heat Exchange by Collisions between Gas Molecules and Liquid Surfaces). using Molecular Dynamics (MD) Simulations, We Study Thermal Transport Across the Liquid-Vapor Interface of a Model N-Dodecane (C12H26) under Various Driving Force Conditions. in Each MD Simulation, We Restrict the Thermal Energy to Be Transferred Across the Liquid-Vapor Interface by Only One Mechanism. in Spite of the Complex Intramolecular Interactions in N-Dodecane Molecules, Our Modeling Results Indicate that the Schrage Relationships, Which Were Shown …


A Molecular Dynamics Study Of Transient Evaporation And Condensation, Zhi Liang, Anirban Chandra, Eric Bird, Pawel Keblinski Mar 2020

A Molecular Dynamics Study Of Transient Evaporation And Condensation, Zhi Liang, Anirban Chandra, Eric Bird, Pawel Keblinski

Mechanical and Aerospace Engineering Faculty Research & Creative Works

We Use Molecular Dynamics (MD) Simulations to Study the Transient Evaporation and Condensation of a Pure Fluid Ar in a Nanochannel. in the MD Model, the Evaporation and Condensation of Fluid Ar is Initiated by a Sudden Increase of the Temperature or Periodically Varying the Temperature in the Solid Substrate on One Side of the Nanochannel. in Both Cases, We Find the Transient Evaporation and Condensation Rates Obtained Directly from MD Simulations Are in Good Agreement with the Predictions from the Schrage Relationships. Furthermore, Our Analyses Show that the Kinetics of the Transient Heat and Mass Transfer between the Evaporating …


Multifidelity Modeling By Polynomial Chaos-Based Cokriging To Enable Efficient Model-Based Reliability Analysis Of Ndt Systems, Xiaosong Du, Leifur Leifsson Mar 2020

Multifidelity Modeling By Polynomial Chaos-Based Cokriging To Enable Efficient Model-Based Reliability Analysis Of Ndt Systems, Xiaosong Du, Leifur Leifsson

Mechanical and Aerospace Engineering Faculty Research & Creative Works

This work proposes a novel multifidelity metamodeling approach, the polynomial chaos-based Cokriging (PC-Cokriging). The proposed approach is used for fast uncertainty propagation in a reliability analysis of nondestructive testing systems using model-assisted probability of detection (MAPOD). In particular, PC-Cokriging is a multivariate version of polynomial chaos-based Kriging (PC-Kriging), which aims at combining the advantages of the regression-based polynomial chaos expansions and the interpolation-based Kriging metamodeling methods. Following a similar process as Cokriging, the PC-Cokriging advances PC-Kriging by enabling the incorporation of multifidelity physics information. The proposed PC-Cokriging is demonstrated on two analytical functions and three ultrasonic testing MAPOD cases. The …


Fabrication And Characterization Of Multifunctional Composites, Aditya R. Thakur Jan 2020

Fabrication And Characterization Of Multifunctional Composites, Aditya R. Thakur

Doctoral Dissertations

“This study details the research to facilitate fabrication and characterization of novel structural composites reinforced with carbon fibers. Across industries, materials with high performance-to-weight ratio are sought after. Using carbon fibers as secondary phases in these proposed composites, specific characteristics can be tailored in these materials to manufacture strong, lightweight, high performance structures. The first part of the research focused on the improvement in the mechanical properties of the composites using carbon fiber reinforcement. As a part of this study, toughened ceramic composites with predictable failure patterns were produced using carbon fiber inclusions. A closed-form analytical model was developed to …


Comparison Of Reynolds-Averaged Navier-Stokes Turbulence Models For Simulating Boundary Layers In Hypersonic Flows, Jorge-Valentino Kurose Bretzke Jan 2020

Comparison Of Reynolds-Averaged Navier-Stokes Turbulence Models For Simulating Boundary Layers In Hypersonic Flows, Jorge-Valentino Kurose Bretzke

Masters Theses

“This study describes the use of Computational Fluid Dynamics (CFD) codes to simulate hypersonic boundary layers using several different turbulent closure models and comparing Reynolds-Averaged Navier-Stokes (RANS) simulations against Direct Numerical Simulations (DNS) of similar test cases. The test cases in this study consist of a flat plate in a Mach 8 freestream with a zero pressure gradient and wall recovery ratio of 0.48, as well as a Mach 8 axisymmetric nozzle also with a cold wall. The RANS models used in this study are the Spalart-Allmaras model, Baldwin-Lomax model, Menter K-Omega Baseline and Menter K-Omega Shear Stress Transport models. …


Direct Numerical Simulations Of Acoustic Disturbances In Various Rectangular Nozzle Configurations, Nathaniel Hildebrand, Meelan M. Choudhari, Lian Duan Jan 2020

Direct Numerical Simulations Of Acoustic Disturbances In Various Rectangular Nozzle Configurations, Nathaniel Hildebrand, Meelan M. Choudhari, Lian Duan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

We perform Direct Numerical Simulations (DNS) to study the acoustic freestream disturbances radiating from the turbulent boundary layers along the contoured nozzle walls of a hypersonic wind tunnel with a rectangular test section. To begin with, the effects of the spanwise end walls are suppressed by confining the spanwise computational domain to a finite segment of the overall nozzle cross section and by imposing periodic boundary conditions across that spanwise domain. Besides providing a building-block configuration to reveal partial effects of the enclosed acoustic environment within the wind tunnel, these computations serve as a steppingstone toward the goal of fully-3D …


Direct Numerical Simulation Of Turbulent Pressure Fluctuations Over A Cone At Mach 8, Junji Huang, Lian Duan, Katya M. Casper, Ross M. Wagnild, Neal P. Bitter Jan 2020

Direct Numerical Simulation Of Turbulent Pressure Fluctuations Over A Cone At Mach 8, Junji Huang, Lian Duan, Katya M. Casper, Ross M. Wagnild, Neal P. Bitter

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Direct numerical simulations (DNS) were conducted to characterize the pressure fluctuations under the turbulent portion of the boundary layer over a sharp 7◦ half-angle cone at a nominal freestream Mach number of 8 and a unit Reynolds number of Reunit = 13.4 x 106/m. The axisymmetric cone geometry and the flow conditions of the DNS matched those measured in the Sandia Hypersonic Wind Tunnel at Mach 8 (Sandia HWT-8). The DNS-predicted wall pressure statistics, including the root-mean-square (r.m.s.) fluctuations and the power spectral density (PSD), were compared with those measured in the Sandia HWT-8. A good comparison between the DNS …


Applications Of Polynomial Chaos-Based Cokriging To Aerodynamic Design Optimization Benchmark Problems, Jethro Nagawkar, Leifur Leifsson, Xiaosong Du Jan 2020

Applications Of Polynomial Chaos-Based Cokriging To Aerodynamic Design Optimization Benchmark Problems, Jethro Nagawkar, Leifur Leifsson, Xiaosong Du

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In this work, the polynomial chaos-based Cokriging (PC-Cokriging) is applied to a benchmark aerodynamic design optimization problem. The aim is to perform fast design optimization using this multifidelity metamodel. Multifidelity metamodels use information at multiple levels of fidelity to make accurate and fast predictions. Higher amount of lower fidelity data can provide important information on the trends to a limited amount of high-fidelity (HF) data. The PC-Cokriging metamodel is a multivariate version of the polynomial chaos-based Kriging (PC-Kriging) metamodel and its construction is similar to Cokriging. It combines the advantages of the interpolation-based Kriging metamodel and the regression-based polynomial chaos …


Numerical Study Of Paramagnetic Elliptical Microparticles In Curved Channels And Uniform Magnetic Fields, Christopher Sobecki, Jie Zhang, Cheng Wang Jan 2020

Numerical Study Of Paramagnetic Elliptical Microparticles In Curved Channels And Uniform Magnetic Fields, Christopher Sobecki, Jie Zhang, Cheng Wang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

We numerically investigated the dynamics of a paramagnetic elliptical particle immersed in a low Reynolds number Poiseuille flow in a curved channel and under a uniform magnetic field by direct numerical simulation. A finite element method, based on an arbitrary Lagrangian-Eulerian approach, analyzed how the channel geometry, the strength and direction of the magnetic field, and the particle shape affected the rotation and radial migration of the particle. The net radial migration of the particle was analyzed after executing a π rotation and at the exit of the curved channel with and without a magnetic field. In the absence of …


A Brief Review On 3d Bioprinted Skin Substitutes, Fateme Fayyazbakhsh, Ming-Chuan Leu Jan 2020

A Brief Review On 3d Bioprinted Skin Substitutes, Fateme Fayyazbakhsh, Ming-Chuan Leu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The Global Escalating Cases of Skin Donor Shortage for Patients with Severe Wounds Warn the Vital Need for Alternatives to Skin Allografts. over the Last Three Decades, Research in the Skin Regeneration Area Has Addressed the Unmet Need for Artificial Skin Substitutes. 3D Bioprinting is a Promising Innovative Technology to Accurately Fabricate Skin Constructs based on Natural or Synthetic Bioinks, Whether Loaded or Not Loaded with Native Skin Cells (I.e., Keratinocytes and Fibroblasts) or Stem Cells in the Prescribed 3D Hierarchal Structure to Create Artificial Multilayer and Single Cell-Laden Construct. in This Paper, the Recent Developments in 3D Bioprinting for …


Generalization Of Polynomial Chaos For Estimation Of Angular Random Variables, Christine Louise Schmid Jan 2020

Generalization Of Polynomial Chaos For Estimation Of Angular Random Variables, Christine Louise Schmid

Doctoral Dissertations

“The state of a dynamical system will rarely be known perfectly, requiring the variable elements in the state to become random variables. More accurate estimation of the uncertainty in the random variable results in a better understanding of how the random variable will behave at future points in time. Many methods exist for representing a random variable within a system including a polynomial chaos expansion (PCE), which expresses a random variable as a linear combination of basis polynomials.

Polynomial chaos expansions have been studied at length for the joint estimation of states that are purely translational (i.e. described in Cartesian …


Characterization Of A Plasma Source Simulating Solar Wind Plasma In A Vacuum Chamber, Blake Anthony Folta Jan 2020

Characterization Of A Plasma Source Simulating Solar Wind Plasma In A Vacuum Chamber, Blake Anthony Folta

Masters Theses

"The United States has set an aggressive time line to not only return to the Moon, but also to establish a sustained human presence. In the Apollo missions dust was a significant factor, but the duration of those missions was short so dust and surface charging were problems, but they did not pose an immediate threat. For a long-term mission, these problems instead become incredibly detrimental. Because of this, research needs to be conducted to investigate these phenomena so that mitigation techniques can be developed and tested. To this end, this thesis serves to demonstrate the Gas and Plasma Dynamics …


Finite Time Suboptimal Control Design Of Nonlinear Systems With Θ-D Technique And Implementation To Aerospace Applications, Jie Yao Jan 2020

Finite Time Suboptimal Control Design Of Nonlinear Systems With Θ-D Technique And Implementation To Aerospace Applications, Jie Yao

Doctoral Dissertations

“A finite time suboptimal control strategy (named θ - D approximated algorithm) was proposed in this study, which can provide the control engineers with a novel effective and efficient design tool from the finite time optimal perspective. Based on the framework of this proposed method, the original nonlinear dynamics were formulated in pseudo-linear form, and the performance index was denoted by a linear quadratic regulator prototype in this research. After that, the approximated solutions to intractable Hamilton-Jacobi-Bellman (HJB) equation were acquired by putting vanishing perturbation terms into the performance index. By tuning the parameters in perturbation terms, semi-global stability and …


Applications Of Information Theory In Filtering And Sensor Management, Matthew James Gualdoni Jan 2020

Applications Of Information Theory In Filtering And Sensor Management, Matthew James Gualdoni

Doctoral Dissertations

“A classical sensor tasking methodology is analyzed in the context of generating sensor schedules for monitoring resident space objects (RSOs). This approach, namely maximizing the expected Kullback-Leibler divergence in a measurement update, is evaluated from a probabilistic perspective to determine the accuracy of the conventional approach. In this investigation, a newdivergence-based approach is proposed to circumvent themyopic nature of the measure, forecasting the potential information contribution to a time of interest and leveraging the system dynamics and measurement model to do so. The forecasted objective exploits properties of a batch measurement update to frequently exhibit faster optimization times when compared …


Magnetic Control Of Transport Of Particles And Droplets In Low Reynolds Number Shear Flows, Jie Zhang Jan 2020

Magnetic Control Of Transport Of Particles And Droplets In Low Reynolds Number Shear Flows, Jie Zhang

Doctoral Dissertations

“Magnetic particles and droplets have been used in a wide range applications including biomedicine, biological analysis and chemical reaction. The manipulation of magnetic microparticles or microdroplets in microscale fluid environments is one of the most critical processes in the systems and platforms based on microfluidic technology. The conventional methods are based on magnetic forces to manipulate magnetic particles or droplets in a viscous fluid.

In contrast to conventional magnetic separation method, several recent experimental and theoretical studies have demonstrated a different way to manipulate magnetic non-spherical particles by using a uniform magnetic field in the microchannel. However, the fundamental mechanism …


Forming And Processing Of Advanced Fiber Reinforced Polymer Composites, Robert Meinders Jan 2020

Forming And Processing Of Advanced Fiber Reinforced Polymer Composites, Robert Meinders

Doctoral Dissertations

“Composite materials are commonly used in industry to manufacture strong and lightweight structures. Composites feature a large degree of flexibility in materials selection and manufacturing processes to tailor the strength of manufactured parts. This study examines different manufacturing aspects of composites. In Part I, the fabrication of composite parts using the compression forming process is examined. During compression forming, metal dies are used to apply large deformations to prepreg material to fabricate composite parts. The high stresses and deformations of this process can yield manufacturing defects. T650/5320-1 prepreg is subjected to material characterization to develop simulations of large deformation forming …


A B-Spline-Based Generative Adversarial Network Model For Fast Interactive Airfoil Aerodynamic Optimization, Xiaosong Du, Ping He, Joaquim R.R.A. Martins Jan 2020

A B-Spline-Based Generative Adversarial Network Model For Fast Interactive Airfoil Aerodynamic Optimization, Xiaosong Du, Ping He, Joaquim R.R.A. Martins

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Airfoil aerodynamic optimization is of great importance in aircraft design; however, it relies on high-fidelity physics-based models that are computationally expensive to evaluate. In this work, we provide a methodology to reduce the computational cost for airfoil aerodynamic optimization. Firstly, we develop a B-spline based generative adversarial networks (BSplineGAN) parameterization method to automatically infer design space with sufficient shape variability. Secondly, we construct multi-layer neural network (MNN) surrogates for fast predictions on aerodynamic drag, lift, and pitching moment coefficients. The BSplineGAN has a relative error lower than 1% when fitting to UIUC database. Verification of MNN surrogates shows the root …


Simulation And Modeling Of Cold-Wall Hypersonic Turbulent Boundary Layers On Flat Plate, Junji Huang, Gary L. Nicholson, Lian Duan, Meelan M. Choudhari, Rodney D.W. Bowersox Jan 2020

Simulation And Modeling Of Cold-Wall Hypersonic Turbulent Boundary Layers On Flat Plate, Junji Huang, Gary L. Nicholson, Lian Duan, Meelan M. Choudhari, Rodney D.W. Bowersox

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Direct numerical simulations (DNS) of flat-plate, zero-pressure-gradient turbulent boundary layers are presented for nominal freestream Mach numbers of 11 and 14 and a highly cooled wall (wall-to-recovery temperature of approximately 0.2). The flow conditions of the DNS are representative of the experimental data for a Mach 11.1 turbulent boundary layer on a flat plate that was tested at Calspan–University of Buffalo Research Center (CUBRC) and the operational conditions of the AEDC Hypervelocity Tunnel No. 9 at Mach 14. The wall shear stress and turbulent heat flux predicted by DNS show good comparisons with those measured at CUBRC and those modeled …


Impact Of Turbulence Models And Shape Parameterization On Robust Aerodynamic Shape Optimization, Aslihan Vuruskan Jan 2020

Impact Of Turbulence Models And Shape Parameterization On Robust Aerodynamic Shape Optimization, Aslihan Vuruskan

Doctoral Dissertations

"Aerodynamic design optimization is typically performed at fixed flight conditions, without considering the variation and uncertainty in operating conditions. The objective of robust aerodynamic optimization is to design an aerodynamic configuration, which will keep its optimum performance under varying conditions such as the speed of aircraft. The primary goal of this study was to investigate the impact of turbulence models used in RANS simulations on the 2-D airfoil and 3-D wing designs obtained with gradient-based deterministic and robust optimization in transonic, viscous, turbulent flows. The main contribution of this research to the aerodynamic design area was to quantify the impact …


Experimental Investigation Of Ionic Liquid Mixtures For Electrospray Propulsion, Mitchell J. Wainwright Jan 2020

Experimental Investigation Of Ionic Liquid Mixtures For Electrospray Propulsion, Mitchell J. Wainwright

Doctoral Dissertations

"In recent years, there has been a dramatic increase in the number of small satellites (namely MicroSats, NanoSats, and CubeSats) in earth orbit; many of these are launched without propulsion systems. Multi-mode propulsion systems, capable of operating in either chemical or electric mode, have been proposed as attractive candidates for use in small satellites. Such systems are mass and volume optimal and flexible in terms of thrust requirements. Most previous work on multi-mode systems has focused on chemical mode performance.The work in this dissertation focuses on the electric mode performance of these propulsion systems.

The work in this research is …


Effect Of Turbulence Model Closure Coefficient Uncertainty On Scramjet Flow Field Analysis, Martin Albert Di Stefano Jan 2020

Effect Of Turbulence Model Closure Coefficient Uncertainty On Scramjet Flow Field Analysis, Martin Albert Di Stefano

Doctoral Dissertations

“The numerical modeling of supersonic combustion ramjet (scramjet) engine flow paths plays an important role in the design of hypersonic air-breathing propulsion systems. Due to the complexity of the flow field physics and limited experimental data, numerical models possess uncertainties which should be addressed to improve the prediction accuracy of the simulations. In this study, the effect of turbulence model closure coefficient uncertainty on the Reynolds-averaged Navier-Stokes solution of a scramjet isolator and scramjet strut fuel injector flow field is investigated with an uncertainty quantification and sensitivity analysis study for commonly used turbulence models. Turbulence models considered in this work …


Design And Development Of Power Processing Units For Applications In Electrically-Propelled Satellite Systems, Kartikeya Jayadurga Prasad Veeramraju Jan 2020

Design And Development Of Power Processing Units For Applications In Electrically-Propelled Satellite Systems, Kartikeya Jayadurga Prasad Veeramraju

Masters Theses

"Electrospray technology provides a way to ionize specialized liquids by applying high voltages across a sharp porous tip and a metallic mesh. This technology is widely used in the field of mass spectroscopy for generating ions for testing purposes. The dawn of nano-satellites posed new challenges in the miniaturization of many conventional satellite sub-systems. One significant challenge faced in such a process was the miniaturization of the propulsion system. Electrosprays have started to find their application in the field of Aerospace Engineering and now are formally known as Electrospray Thrusters. These thrusters provide high specific impulse and are attractive substitutes …