Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Design Of A Test Frame And Its Corresponding Test Methods For A Deployable Composite Boom, William Luther Montgomery Oct 2023

Design Of A Test Frame And Its Corresponding Test Methods For A Deployable Composite Boom, William Luther Montgomery

Theses and Dissertations

Deployable composite booms (DCB) are an advanced class of support beams growing in applications including solar collectors and solar sails. DCBs can be coiled or folded into a compact footprint and the ability to be deployed, and in some design, concepts redeployed, making them optimal components for aerospace where weight and volume are finite resources. DCBs are a cutting-edge technology that has yet to be perfected with a need for longer booms with increased stiffnesses to accommodate the latest proposed designs. Atomic-6 has proposed a 16-foot boom manufactured using an autoclave process which aims to reach the goal of producing …


Solar-Powered Exploration Of The Venus Atmosphere, Marc Migliozzi, Cory Everman, Rebecca Buerhle, Umar Muhammed, Steven Abbate, Chase Champagne Jan 2020

Solar-Powered Exploration Of The Venus Atmosphere, Marc Migliozzi, Cory Everman, Rebecca Buerhle, Umar Muhammed, Steven Abbate, Chase Champagne

Williams Honors College, Honors Research Projects

The objective of this study was to design a solar powered, unmanned aircraft to orbit in the upper Venus atmosphere and search for signs of alien life. Topics of flight conditions, signs of life, basic mission plan, source of power, design process, instrumentation, and final designs are covered. Solar energy is ideal for this type of mission because it is the only reliable and abundant energy source accessible for long term space travel. The target altitude, being 60 to 70 km, has winds of up to 95 m/s. The aircraft will need to remain stable under such conditions. Due to …


Modeling And Testing Powerplant Subsystems Of A Solar Uas, Luke J. Bughman Oct 2019

Modeling And Testing Powerplant Subsystems Of A Solar Uas, Luke J. Bughman

Master's Theses

In order to accurately conduct the preliminary and detailed design of solar powered Unmanned Aerial Systems (UAS), it is necessary to have a thorough understanding of the systems involved. In particular, it is desirable to have mathematical models and analysis tools describing the energy income and expenditure of the vehicle. Solar energy income models may include available solar irradiance, photovoltaic array power output, and maximum power point tracker efficiency. Energy expenditure models include battery charging and discharging characteristics, propulsion system efficiency, and aerodynamic efficiency. In this thesis, a series of mathematical models were developed that characterize the performance of these …


Numerical Characterization Of The Flow Field And Heat Transfer Inside The Receiver Of A Parabolic Trough Solar Collector Carrying Supercritical Co2, Samad Gharehdaghimollahajloo Dec 2017

Numerical Characterization Of The Flow Field And Heat Transfer Inside The Receiver Of A Parabolic Trough Solar Collector Carrying Supercritical Co2, Samad Gharehdaghimollahajloo

UNLV Theses, Dissertations, Professional Papers, and Capstones

The aim of this research is to provide a detailed numerical analysis of flow field and heat transfer inside the heat collecting element of a parabolic trough collector. The parabolic trough collector is used as the boiler in a direct Super Critical Carbon Dioxide (S-CO2) Brayton cycle.

A single collector is modeled and analyzed with different inlet conditions. The working fluid is supercritical since its pressure is increased to above critical pressure in the compressor while its temperature reaches 300 °C after passing through the recuperators and before entering the solar field. For the first time, this research considers both …


Solar Sail Trajectory Design In The Earth-Moon Circular Restricted Three Body Problem, Ashwati Das Oct 2014

Solar Sail Trajectory Design In The Earth-Moon Circular Restricted Three Body Problem, Ashwati Das

Open Access Theses

The quest to explore the Moon has helped resolve scientific questions, has spurred leaps in technology development, and has revealed Earth's celestial companion to be a gateway to other destinations. With a renewed focus on returning to the Moon in this decade, alternatives to chemical propulsion systems are becoming attractive methods to efficiently use scarce resources and support extended mission durations. Thus, an investigation is conducted to develop a general framework, that facilitates propellant-free Earth-Moon transfers by exploiting sail dynamics in combination with advantageous transfer options offered in the Earth-Moon circular restricted multi-body dynamical model. Both periodic orbits in the …


Investigation Into The Mitigation Of The Effects Of Uncertain Optical Degradation On An Interplanetary Solar Sail Mission Using A Single Model Update, Jordan Smiroldo Dec 2013

Investigation Into The Mitigation Of The Effects Of Uncertain Optical Degradation On An Interplanetary Solar Sail Mission Using A Single Model Update, Jordan Smiroldo

Master's Theses

The renewed academic interest in using solar sails as a source of spacecraft propulsion has been accompanied by a recent fervor of investigations into non-ideal and off-nominal sail performance considerations. One of the most influential considerations, uncertain optical degradation, has been shown to present significant trajectory design difficulties. This paper investigates the potential of using a mid-course degradation model update to mitigate the risk of missing the target destination in a sample 300 day Earth-Venus trajectory. Using a range of potential degradation profiles, it is shown that correcting in the first half of the mission is highly likely to result …


Multidisciplinary Design Optimization Of An Extreme Aspect Ratio Hale Uav, Bryan J. Morrisey Jun 2009

Multidisciplinary Design Optimization Of An Extreme Aspect Ratio Hale Uav, Bryan J. Morrisey

Master's Theses

ABSTRACT

Multidisciplinary Design Optimization of an Extreme Aspect Ratio HALE UAV

Bryan J. Morrisey

Development of High Altitude Long Endurance (HALE) aircraft systems is part of a vision for a low cost communications/surveillance capability. Applications of a multi payload aircraft operating for extended periods at stratospheric altitudes span military and civil genres and support battlefield operations, communications, atmospheric or agricultural monitoring, surveillance, and other disciplines that may currently require satellite-based infrastructure. Presently, several development efforts are underway in this field, including a project sponsored by DARPA that aims at producing an aircraft that can sustain flight for multiple years and …