Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Experimental And Modelling Of Lightning Damage To Carbon Fibre-Reinforced Composites Under Swept Stroke, Chengzhao Kuang, Kunkun Fu, Juhyeong Lee, Huixin Zhu, Qizhen Shi, Xiaoyu Cui Dec 2023

Experimental And Modelling Of Lightning Damage To Carbon Fibre-Reinforced Composites Under Swept Stroke, Chengzhao Kuang, Kunkun Fu, Juhyeong Lee, Huixin Zhu, Qizhen Shi, Xiaoyu Cui

Mechanical and Aerospace Engineering Faculty Publications

Lightning swept stroke creates multiple lightning attachments along an aircraft in flight. This introduces distinct structural damage compared to that from a single-point lightning current injection test in laboratory. This study presents both experimental and numerical studies on lightning damage in carbon fibre-reinforced polymer (CFRP) composites under swept stroke. Coupled electrical–thermal finite element (FE) models were proposed to predict lightning damage to CFRP composites under single-point current injection and swept stroke, respectively. A lightning swept stroke testing method was proposed by embedding a copper wire inside the composites to simulate multiple lightning attachments on the composites. The FE-predicted damage from …


Towards A Virtual Test Framework To Predict Residual Compressive Strength After Lightning Strikes, Scott L.J. Millen, Xiaodong Xu, Juhyeong Lee, Suparno Mukhopadhyay, Michael R. Wisnom, Adrian Murphy Nov 2023

Towards A Virtual Test Framework To Predict Residual Compressive Strength After Lightning Strikes, Scott L.J. Millen, Xiaodong Xu, Juhyeong Lee, Suparno Mukhopadhyay, Michael R. Wisnom, Adrian Murphy

Mechanical and Aerospace Engineering Faculty Publications

A novel integrated modelling framework is proposed as a set of coupled virtual tests to predict the residual compressive strength of carbon/epoxy composites after a lightning strike. Sequentially-coupled thermal-electric and thermo-mechanical models were combined with Compression After Lightning Strike (CAL) analyses, considering both thermal and mechanical lightning strike damage. The predicted lightning damage was validated using experimental images and X-ray Computed Tomography. Delamination and ply degradation information were mapped to a compression model, with a maximum stress criterion, using python scripts. Experimental data, in which artificial lightning strike and compression testing were performed, was used to assess the predictive capabilities …


On Quantifying Uncertainty In Lightning Strike Damage Of Composite Laminates: A Hybrid Stochastic Framework Of Coupled Transient Thermal-Electrical Simulations, R. S. Chahar, J. Lee, T. Mukhopadhyay Nov 2023

On Quantifying Uncertainty In Lightning Strike Damage Of Composite Laminates: A Hybrid Stochastic Framework Of Coupled Transient Thermal-Electrical Simulations, R. S. Chahar, J. Lee, T. Mukhopadhyay

Mechanical and Aerospace Engineering Faculty Publications

Lightning strike damage can severely affect the thermo-mechanical performance of composite laminates. It is essential to quantify the effect of lightning strikes considering the inevitable influence of material and geometric uncertainties for ensuring the operational safety of aircraft. This paper presents an efficient support vector machine (SVM)-based surrogate approach coupled with computationally intensive transient thermal-electrical finite element simulations to quantify the uncertainty in lightning strike damage. The uncertainty in epoxy matrix thermal damage and electrical responses of unprotected carbon/epoxy composite laminates is probabilistically quantified considering the stochasticity in temperature-dependent multi-physical material properties and ply orientations. Further, the SVM models are …


Model-Assisted Online Optimization Of Gain-Scheduled Pid Control Using Nsga-Ii Iterative Genetic Algorithm, Shen Qu, Tianyi He, Guoming Zhu May 2023

Model-Assisted Online Optimization Of Gain-Scheduled Pid Control Using Nsga-Ii Iterative Genetic Algorithm, Shen Qu, Tianyi He, Guoming Zhu

Mechanical and Aerospace Engineering Faculty Publications

In the practical control of nonlinear valve systems, PID control, as a model-free method, continues to play a crucial role thanks to its simple structure and performance-oriented tuning process. To improve the control performance, advanced gain-scheduling methods are used to schedule the PID control gains based on the operating conditions and/or tracking error. However, determining the scheduled gain is a major challenge, as PID control gains need to be determined at each operating condition. In this paper, a model-assisted online optimization method is proposed based on the modified Non-Dominated Sorting Genetic Algorithms-II (NSGA-II) to obtain the optimal gain-scheduled PID controller. …


A Geometrical, Reachable Set Approach For Constrained Pursuit–Evasion Games With Multiple Pursuers And Evaders, Olli Jansson, Matthew W. Harris May 2023

A Geometrical, Reachable Set Approach For Constrained Pursuit–Evasion Games With Multiple Pursuers And Evaders, Olli Jansson, Matthew W. Harris

Mechanical and Aerospace Engineering Faculty Publications

This paper presents a solution strategy for deterministic time-optimal pursuit–evasion games with linear state constraints, convex control constraints, and linear dynamics that is consistent with linearized relative orbital motion models such as the Clohessy–Wiltshire equations and relative orbital elements. The strategy first generates polytopic inner approximations of the players’ reachable sets by solving a sequence of convex programs. A bisection method then computes the optimal termination time, which is the least time at which a set containment condition is satisfied. The pursuit–evasion games considered are games with (1) a single pursuer and single evader, (2) multiple pursuers and a single …


Multiscale Damage Modelling Of Notched And Un-Notched 3d Woven Composites With Randomly Distributed Manufacturing Defects, S.Z.H. Shah, Juhyeong Lee, P.S.M. Megat-Yusoff, Syed Zahid Hussain, T. Sharif, R.S. Choudhry May 2023

Multiscale Damage Modelling Of Notched And Un-Notched 3d Woven Composites With Randomly Distributed Manufacturing Defects, S.Z.H. Shah, Juhyeong Lee, P.S.M. Megat-Yusoff, Syed Zahid Hussain, T. Sharif, R.S. Choudhry

Mechanical and Aerospace Engineering Faculty Publications

This work proposes a stochastic multiscale computational framework for damage modelling in 3D woven composite laminates, by considering the random distribution of manufacturing-induced imperfections. The proposed method is demonstrated to be accurate, while being simple to implement and requiring modest computational resources. In this approach, a limited number of cross-sectional views obtained from micro-computed tomography (µCT) are used to obtain the stochastic distribution of two key manufacturing-induced defects, namely waviness and voids. This distribution is fed into a multiscale progressive damage model to predict the damage response of three-dimensional (3D) orthogonal woven composites. The accuracy of the proposed model was …


Microscale Modelling Of Lightning Damage In Fibre-Reinforced Composites, Scott L. J. Millen, Juhyeong Lee Mar 2023

Microscale Modelling Of Lightning Damage In Fibre-Reinforced Composites, Scott L. J. Millen, Juhyeong Lee

Mechanical and Aerospace Engineering Faculty Publications

In this work, three-dimensional (3D) finite element simulations were undertaken to study the effects of lightning strikes on the microscale behaviour of continuous fibre-reinforced composite materials and to predict and understand complex lightning damage mechanisms. This approach is different from the conventional mesoscale or macroscale level of analysis, that predicts the overall lightning damage in composite laminates, thus providing better understanding of lightning-induced thermo-mechanical damage at a fundamental level. Micromechanical representative volume element (RVE) models of a UD composite laminate were created with circular carbon fibres randomly distributed in an epoxy matrix. The effects of various grounding conditions (one-, two-, …


Developing Test Methods For Compression After Lightning Strikes, Xiaodong Xu, Scott L. J. Millen, Juhyeong Lee, Gasser Abdelal, Daniel Mitchard, Michael R. Wisnom, Adrian Murphy Jan 2023

Developing Test Methods For Compression After Lightning Strikes, Xiaodong Xu, Scott L. J. Millen, Juhyeong Lee, Gasser Abdelal, Daniel Mitchard, Michael R. Wisnom, Adrian Murphy

Mechanical and Aerospace Engineering Faculty Publications

Research into residual strength after lightning strike is increasing within the literature. However, standard test methods for measuring residual compressive strength after lightning strikes do not exist. For the first time, a systematic experimental study is undertaken to evaluate modifications necessary to standard Compression After Impact (CAI) specimen geometry and test jig design to induce specimen failure at the lightning damage region. Four laboratory generated lightning strike currents with peak amplitudes ranging from 25 to 100 kA have been studied. Test set-up modifications were made considering the scale of the lightning damage and its potential proximity to specimen edges. Specimen …


An Alternate Dimensionless Form Of The Linearized Rigid-Body Aircraft Equations Of Motion With Emphasis On Dynamic Parameters, Douglas F. Hunsaker, Benjamin C. Moulton Jan 2023

An Alternate Dimensionless Form Of The Linearized Rigid-Body Aircraft Equations Of Motion With Emphasis On Dynamic Parameters, Douglas F. Hunsaker, Benjamin C. Moulton

Mechanical and Aerospace Engineering Student Publications and Presentations

The equations of motion for an aircraft can be linearized about a reference condition within the assumptions of small disturbances and linear aerodynamics. The resulting system of equations is typically solved to obtain the eigenvalues and eigenvectors that describe the small disturbance motion of the aircraft. Results from such an analysis are often used to predict the rigid-body dynamic modes of the aircraft and associated handling qualities. This process is typically carried out in dimensional form in most text books, or in nondimensional form using dimensionless parameters rooted in aerodynamic theory. Here we apply Buckingham’s Pi theorem to obtain nondimensional …


Simplified Mass And Inertial Estimates For Aircraft With Components Of Constant Density, Benjamin C. Moulton, Douglas F. Hunsaker Jan 2023

Simplified Mass And Inertial Estimates For Aircraft With Components Of Constant Density, Benjamin C. Moulton, Douglas F. Hunsaker

Mechanical and Aerospace Engineering Student Publications and Presentations

Aircraft mass and inertial properties are required for predicting the dynamics and handling qualities of aircraft. However, such properties can be difficult to estimate since these depend on the external shape and internal structure, systems, and mass distributions within the airframe. Mass and inertial properties of aircraft are often predicted using computer-aided design software, or measured using various experimental techniques. The present paper presents a method for quickly predicting the mass and inertial properties of complete aircraft consisting of components of constant density. Although the assumption of constant density may appear limiting, the method presented in this paper can be …


Optimal Spacecraft Guidance, Matthew W. Harris, M. Benjamin Rose Jan 2023

Optimal Spacecraft Guidance, Matthew W. Harris, M. Benjamin Rose

Mechanical and Aerospace Engineering Faculty Publications

This book is designed for a one-semester course at Utah State University titled MAE 6570 Optimal Spacecraft Guidance. The class meets for 75 minutes, twice per week, for 14 weeks. There are no prerequisites other than graduate standing in engineering. Proficiency in calculus, differential equations, linear algebra, and computer programming is required. Students find that previous experience in space dynamics, linear multivariable control, or optimal control is helpful.

The goal of the book and course is for students to develop fundamental skills needed to do professional work in the area of spacecraft guidance. After working through the book, students should …