Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Additive Manufacturing Of High Solids Loading Hybrid Rocket Fuel Grains, Stephen P. Johnson, Michael Baier, Ibrahim E. Gunduz, Steven F. Son Aug 2017

Additive Manufacturing Of High Solids Loading Hybrid Rocket Fuel Grains, Stephen P. Johnson, Michael Baier, Ibrahim E. Gunduz, Steven F. Son

The Summer Undergraduate Research Fellowship (SURF) Symposium

Hybrid rocket motors offer many of the benefits of both liquid and solid rocket systems. Like liquid engines, hybrid rocket motors are able to be throttled, can be stopped and restarted, and are safer than solid rocket motors since the fuel and oxidizer are in different physical states. Hybrid rocket motors are similar to solid motors in that they are relatively simple and have a high density-specific impulse. One of the major drawbacks of hybrid rocket motors is a slower burning rate than solid rocket motors. Complex port geometries provide greater burning surface area to compensate for lower burning rates …


An Experimental Investigation Of Self-Excited Combustion Dynamics In A Single Element Lean Direct Injection (Ldi) Combustor, Rohan M. Gejji Aug 2016

An Experimental Investigation Of Self-Excited Combustion Dynamics In A Single Element Lean Direct Injection (Ldi) Combustor, Rohan M. Gejji

Open Access Dissertations

The management of combustion dynamics in gas turbine combustors has become more challenging as strict NOx/CO emission standards have led to engine operation in a narrow, lean regime. While premixed or partially premixed combustor configurations such as the Lean Premixed Pre-vaporized (LPP), Rich Quench Lean burn (RQL), and Lean Direct Injection (LDI) have shown a potential for reduced NOx emissions, they promote a coupling between acoustics, hydrodynamics and combustion that can lead to combustion instabilities. These couplings can be quite complex, and their detailed understanding is a pre-requisite to any engine development program and for the development of predictive capability …


The Future Of Aerospace Propulsion: Visco-Elastic Non-Newtonian Liquids, Nicole Arockiam Jul 2011

The Future Of Aerospace Propulsion: Visco-Elastic Non-Newtonian Liquids, Nicole Arockiam

The Journal of Purdue Undergraduate Research

Aerospace propulsion often involves the spray and combustion of liquids. When a liquid is sprayed, large drops form first, in a process known as primary atomization. Then, each drop breaks up into smaller droplets, in a process known as secondary atomization. This determines final drop sizes, which affect the liquid’s evaporation and mixing rates and ultimately influence combustor efficiency. Little has been published concerning the secondary atomization of visco-elastic non-Newtonian liquids, such as gels. These substances have special potential as aerospace propellants, because they are safer to handle than their Newtonian liquid counterparts, such as water. Additionally, they can be …