Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering

PDF

Embry-Riddle Aeronautical University

Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 985

Full-Text Articles in Engineering

Analysis Of Wingtip Vortex Structure Generated By Bio-Inspired Winglets, D'Zahn A. Smith May 2024

Analysis Of Wingtip Vortex Structure Generated By Bio-Inspired Winglets, D'Zahn A. Smith

Doctoral Dissertations and Master's Theses

Bio-inspired winglets were studied with the goal of better understanding the structure of the wingtip vortices they generate. Measurements of the tip vortex were previously carried out using stereoscopic particle image velocimetry (sPIV). The bio-inspired winglet was tested on a rectangular NACA 0012 wing section at a 5-degree angle of attack and at a chord Reynolds number of 900,000. Velocity field measurements were recorded at 0.7 and 2 chord lengths aft of the wing’s trailing edge. Compared to the wing with no attachment and a traditional blended winglet, the bio-inspired winglet’s vortex exhibited significantly less intense flow field properties. These …


Modeling Of Rotor Wake Vortex Dynamics And Interactions In Non-Homogenous Vertiport Environments, Garrison P. Shaw May 2024

Modeling Of Rotor Wake Vortex Dynamics And Interactions In Non-Homogenous Vertiport Environments, Garrison P. Shaw

Doctoral Dissertations and Master's Theses

The current research serves to analyze and study the effects ground forces can have on the thrust performance of a propeller in multiple different configurations. The current research utilizes an open source Computational Fluid Dynamics (CFD) software known as OpenFOAM to generate calculate and visualize these runs. The model used for this experiment is a hybrid model that employs both a Unsteady Reynolds-Averaged Navier-Stokes (URANS) and a detached eddy simulation using a hybrid Large Eddy Simulation (LES) via a KomegaSSTDDES model. This model serves to save computational time as well as allow for accurate results. The three cases run are …


Characterization And Analysis Of Supersonic Flow Through De Laval Nozzles At Varied Design Conditions, Sarah Baird May 2024

Characterization And Analysis Of Supersonic Flow Through De Laval Nozzles At Varied Design Conditions, Sarah Baird

Doctoral Dissertations and Master's Theses

A combined numerical and experimental investigation of supersonic planar nozzles under different design conditions has been conducted. Supersonic planar nozzles are common geometries observed in supersonic wind tunnels and aircraft or rocket engines. For the important role they play in wind tunnel testing and aircraft propulsion, it is important to conduct a thorough numerical and experimental study to characterize their performance at different operating conditions. In this study, a de Laval nozzle was scanned to extract its contours and subsequently modeled to compare analytical and numerical performance expectations under design and off-design conditions. The nozzle was then installed in a …


Machine Learning-Based Gps Jamming And Spoofing Detection, Alberto Squatrito Apr 2024

Machine Learning-Based Gps Jamming And Spoofing Detection, Alberto Squatrito

Doctoral Dissertations and Master's Theses

The increasing reliance on Global Positioning System (GPS) technology across various sectors has exposed vulnerabilities to malicious attacks, particularly GPS jamming and spoofing. This thesis presents an analysis into detection and mitigation strategies for enhancing the resilience of GPS receivers against jamming and spoofing attacks. The research entails the development of a simulated GPS signal and a receiver model to accurately decode and extract information from simulated GPS signals. The study implements the generation of jammed and spoofed signals to emulate potential threats faced by GPS receivers in practical settings. The core innovation lies in the integration of machine learning …


Development Of Eagle3d Solver For Wall Modeled Les Of Transonic Flows, Spencer Moore Apr 2024

Development Of Eagle3d Solver For Wall Modeled Les Of Transonic Flows, Spencer Moore

Doctoral Dissertations and Master's Theses

Wall modeled Large Eddy Simulation (LES) is an area of interest due to its ability to lower computational costs of LES simulation. Even with the application of wall models, LES still proves to have practicality issues when it comes to use in industry, due to the expertise, time, and computational resources required to get results. A case described by an axisymmetric transonic bump is explored utilizing the Embry-Riddle Aeronautical Universities in house unstructured finite volume multi-element CFD code, Eagle3D. Eagle3D, has been brought to the state of the art and validated against current research using this transonic bump case as …


Adaptive Control Of An Aeroelastic System For Active Flutter Suppression And Disturbance Rejection, Patrick Sterling Downs Apr 2024

Adaptive Control Of An Aeroelastic System For Active Flutter Suppression And Disturbance Rejection, Patrick Sterling Downs

Doctoral Dissertations and Master's Theses

The future of aircraft design strives for lighter weight, more aerodynamically efficient structures. These improvements may come with the drawback of increased structural flexibility and elevated aeroelastic effects, often resulting in a lower flutter speed. This motivates the implementation of advanced control methods to control aeroelastic systems over a range of flight conditions, suppress and delay the onset of flutter, and compensate for disturbances, actuator dynamics, and unmodeled nonlinear dynamics.

This dissertation first develops a novel method for constructing time-domain simulation models of two and three-dimensional aeroelastic systems, resulting in models that are suitable for the implementation of state-space control …


Starfish: A Compact, Biomimetic, And Adaptive Shape Memory Alloy Orbital Debris Remover, Katelyn Branaman Apr 2024

Starfish: A Compact, Biomimetic, And Adaptive Shape Memory Alloy Orbital Debris Remover, Katelyn Branaman

Doctoral Dissertations and Master's Theses

This thesis aims to turn the tides on the orbital debris issue through the fabrication and demonstration of a compact, biomimetic, and adaptive shape memory alloy actuated orbital debris remover. The design, referred to as Starfish, is discussed in detail along with its fabrication process and object capture ability. A hard skeleton crafted from PETG was combined with shape memory alloy wires and extension springs to create a biomimetic structure that operates similar to the human hand, capable of gripping a wide range of objects. Relevant simulations were performed and discussed, the iterative fabrication process used to create each component …


State Omniscience For Cooperative Local Catalog Maintenance Of Close Proximity Satellite Systems, Chris Hays Apr 2024

State Omniscience For Cooperative Local Catalog Maintenance Of Close Proximity Satellite Systems, Chris Hays

Doctoral Dissertations and Master's Theses

Resiliency in multi-agent system navigation is reliant on the inherent ability of the system to withstand, overcome, or recover from adverse conditions and disturbances. In large part, resiliency is achieved through reducing the impact of critical failure points to the success and/or performance of the system. In this view, decentralized multi-agent architectures have become an attractive solution for multi-agent navigation, but decentralized architectures place the burden of information acquisition directly on the agents themselves. In fact, the design of distributed estimators has been a growing interest to enable complex multi-sensor/multi-agent tasks. In such scenarios, it is important that each local …


Implementation Of Path Planning Methods To Detect And Avoid Gps Signal Degradation In Urban Environments, Ayush Raminedi Apr 2024

Implementation Of Path Planning Methods To Detect And Avoid Gps Signal Degradation In Urban Environments, Ayush Raminedi

Doctoral Dissertations and Master's Theses

In the modern world, various missions are being carried out under the assistance of autonomous flight vehicles due to their ability to operate in a wide range of flight conditions. Regardless, these autonomous vehicles are prone to GPS signal loss in urban environments due to obstructions that cause scintillation, multi-path, and shadowing. These effects that decrease the GPS functionality can deteriorate the accuracy of GPS positioning causing losses in signal tracking leading to a decrease in navigation performance. These effects are modeled into the simulation environment and are used as part of the path planning algorithm to provide better navigation …


Development Of Eagle3d Solver For Wall Modeled Les Of Transonic Flows, Spencer Moore Apr 2024

Development Of Eagle3d Solver For Wall Modeled Les Of Transonic Flows, Spencer Moore

Doctoral Dissertations and Master's Theses

Wall modeled Large Eddy Simulation (LES) is an area of interest due to its ability to lower computational costs of LES simulation. Even with the application of wall models, LES still proves to have practicality issues when it comes to use in industry, due to the expertise, time, and computational resources required to get results. A case described by an axisymmetric transonic bump is explored utilizing the Embry-Riddle Aeronautical Universities in house unstructured finite volume multi-element CFD code, Eagle3D. Eagle3D, has been brought to the state of the art and validated against current research using this transonic bump case as …


Damage Control Measures In Composites: Focus On Damage Tolerance Of Aerospace Structures, Kais Jribi Apr 2024

Damage Control Measures In Composites: Focus On Damage Tolerance Of Aerospace Structures, Kais Jribi

Doctoral Dissertations and Master's Theses

Barely Visible Impact Damage (BVID) in composite materials presents a stealthy yet significant risk to structural integrity, particularly challenging due to its elusive nature. The approach adopted here diverges from traditional methodologies, focusing on the novel application of Digital Image Correlation (DIC) to map surface area changes during in-situ Compression After Impact (CAI) tests. This technique allows for an in-depth analysis of planar strains along the x and y axes, shedding light on the material's behavior under stress.

A pivotal advancement lies in developing a method for precisely identifying when BVID-induced delamination recommences. By meticulously analyzing strain pattern deviations along …


Ti Nano Powder Speckle Pattern Creation And Use In Dic Of Zno Modified Single Carbon Fibers, James Matthew Harris Apr 2024

Ti Nano Powder Speckle Pattern Creation And Use In Dic Of Zno Modified Single Carbon Fibers, James Matthew Harris

Doctoral Dissertations and Master's Theses

As the use of composites continues to grow across aerospace, naval, automotive, construction, 3D printing, and other countless industries, so does the desire to continuously improve their mechanical properties. Improving the adherence of the fiber-matrix interface is one important step for amplifying the capabilities of composites. Work has been performed in modifying carbon fibers by growing zinc oxide (ZnO) nanorods in the fiber surface using a hydrothermal approach, increasing interfacial area and fiber-matrix friction. Macroscale evaluation has shown that the interfacial modification decreases the inter-ply movement and reduces the processing strains and residual stresses. To fully understand the mechanism taking …


Numerical Study In Wind Energy Extraction From Controlled Limit-Cycle Oscillations In Modified Glauert Airfoil, Ethan L. Deweese Apr 2024

Numerical Study In Wind Energy Extraction From Controlled Limit-Cycle Oscillations In Modified Glauert Airfoil, Ethan L. Deweese

Doctoral Dissertations and Master's Theses

Typically, wind energy harvesting technology employs wind turbines. Towards the goal of meeting increasing energy needs with renewable energy sources a novel wind energy harvesting scheme is considered, utilizing a modified Glauert (MG) airfoil experiencing aeroelastic limit cycle oscillation (LCO) from which energy may be extracted. Synthetic jet actuators (SJA)s are used along with the unique geometry of the MG airfoil to control flow separation and amplify the LCO and energy generation potential of the system. The discussed wind energy harvesting scheme could provide flexibility in allowing installations previously unsuitable to wind turbines due to geometric or low wind velocity …


Benchmarking Of A Sco2 Heat Exchanger Flow Loop, David Velasco Apr 2024

Benchmarking Of A Sco2 Heat Exchanger Flow Loop, David Velasco

Doctoral Dissertations and Master's Theses

Heat transfer of supercritical carbon dioxide (sCO2) was studied experimentally by commissioning a sCO2 flow loop featuring a horizontal tube-in-tube counterflow heat exchanger with a circular cross section. The main objective was to establish experimental heat transfer research capabilities for sCO2 at Embry-Riddle Aeronautical University’s (ERAU) Thermal Science Lab. sCO2 experiences a drastic change in thermophysical properties near its critical point that results in unique heat transfer characteristics. The high pressures at which sCO2 exists make the large gradients in thermophysical and transport properties difficult to study, experimentally and numerically. However, understanding the heat transfer characteristics and thermophysical behavior of …


Mitigating Engine Unstart In Scramjets With Porous Bleeders, Ryan Lindley Apr 2024

Mitigating Engine Unstart In Scramjets With Porous Bleeders, Ryan Lindley

Doctoral Dissertations and Master's Theses

The effectiveness of porous bleeders in mitigating unstart phenomena and enhancing isolator effectiveness in a hypersonic scramjet was investigated. Through computational fluid dynamics simulations, the impact of porous bleeder design parameters such as pressure jump coefficient and bleeder size on isolator effectiveness and unstart prevention was evaluated. Results indicated that porous bleeders delayed flow separation and reduced adverse pressure gradients, thereby enhancing isolator performance. Additionally, porous bleeders demonstrated promising capabilities in preventing full unstart events and mitigating oscillatory unstart phenomena.


Conceptual Design Methodology For The Fan-In-Wing Vtol Aircraft, Brock Steinfeldt Apr 2024

Conceptual Design Methodology For The Fan-In-Wing Vtol Aircraft, Brock Steinfeldt

Doctoral Dissertations and Master's Theses

The Fan-In-Wing (FIW) aircraft concept is one of the most compelling solutions for missions demanding jet-like cruise speeds and Vertical TakeOff and Landing (VTOL) capability. However, despite years of interest and documented improvements in lift-fan technology, there exists little in the way of an adequate theory for conceptual design of a fan-in-wing aircraft. To address this issue, a general conceptual design methodology has been developed as a source of guidance for the FIW designer. Through this work, the top-level requirements ranking the fan-in-wing concept above other VTOL aircraft have been defined, while a cross-comparison between the FIW concept and conventional …


A Comparison Of Beamforming Characteristics In Isotropic And Composite Plate Structures For Use In Structural Health Monitoring, Sarah Ketchersid Mar 2024

A Comparison Of Beamforming Characteristics In Isotropic And Composite Plate Structures For Use In Structural Health Monitoring, Sarah Ketchersid

Doctoral Dissertations and Master's Theses

Structural health monitoring in plate-like simple structures using phased array beamsteering of guided Lamb waves is useful in damage detection and evaluation efforts. Lamb waves can be effectively used for beamsteering using a linear array. The experimentation primarily focuses on beamsteering in the aluminum panel, which involves developing a simulation based on extracted data to visualize the dispersion of waves across the panel. By evaluating parameters such as slowness, velocity, and amplitude direction and variation for a specific metallic plate, the wavefront generated by a single wave source can be represented as a function of propagation angle and distance from …


Farmer Perceptions Of Land Cover Classification Of Uas Imagery Of Coffee Agroecosystems In Puerto Rico, Jose Cabrera, Blake Neal, Kevin Adkins, Ronny Schroeder, Gwendolyn Klenke, Shannon Brines, Nayethzi Hernandez, Kevin Li, Riley Glancy, Ivette Perfecto Mar 2024

Farmer Perceptions Of Land Cover Classification Of Uas Imagery Of Coffee Agroecosystems In Puerto Rico, Jose Cabrera, Blake Neal, Kevin Adkins, Ronny Schroeder, Gwendolyn Klenke, Shannon Brines, Nayethzi Hernandez, Kevin Li, Riley Glancy, Ivette Perfecto

Publications

Highly diverse agroecosystems are increasingly of interest as the realization of farms’ invaluable ecosystem services grows. Simultaneously there has been an increased use of uncrewed aerial systems (UAS) in remote sensing as drones offer a finer spatial resolution and faster revisit rate than traditional satellites. With the combined utility of UAS and the attention on agroecosystems, there exists an opportunity to assess UAS practicality in highly biodiverse settings. In this study, we utilized UAS to collect fine-resolution 10-band multispectral imagery of coffee agroecosystems in Puerto Rico. We created land cover maps through a pixel-based supervised classification of each farm and …


Going Airborne: Kent State's Pioneering Leap Into Integrated Advanced Air Mobility, Jason T. Lorenzon Feb 2024

Going Airborne: Kent State's Pioneering Leap Into Integrated Advanced Air Mobility, Jason T. Lorenzon

National Training Aircraft Symposium (NTAS)

This proposal centers on the development of a Concept of Operations in Advanced Air Mobility (AAM). Kent State University's College of Aeronautics and Engineering is poised to pioneer the integration of drones and electric Vertical Takeoff and Landing (eVTOL) systems, bridging the gap between its campus and airport by transporting students and faculty the 3NM distance from campus to the airport and back by a UAV. Beyond a standard research initiative, this proposal signifies a groundbreaking effort to reshape the landscape of educational aeronautics and Advanced Air Mobility and Urban Air Mobility. Our overarching goal is to transcend conventional boundaries …


Cubesat Reaction Wheel Attitude Control Platform System Architecture, Justin Hartland Jan 2024

Cubesat Reaction Wheel Attitude Control Platform System Architecture, Justin Hartland

Beyond: Undergraduate Research Journal

In the classroom, physics behind spacecraft attitude dynamics and controls is abstract and difficult to comprehend. It is common that students struggle to develop the connection between the math they learn and how it can be applied in the real world. The goal of this project is to design and manufacture a 1U, 3U, and 6U CubeSat testbed for autonomous control systems utilizing reaction wheels. The testbed will include three separate reaction wheels each mounted on its own respective axis to control the attitude in 3 degrees of freedom. The end goal of the CubeSat Control Platform is to be …


Immersive Framework For Designing Trajectories Using Augmented Reality, Joseph Anderson, Leo Materne, Karis Cooks, Michelle Aros, Jaia Huggins, Jesika Geliga-Torres, Kamden Kuykendall, David Canales, Barbara Chaparro Jan 2024

Immersive Framework For Designing Trajectories Using Augmented Reality, Joseph Anderson, Leo Materne, Karis Cooks, Michelle Aros, Jaia Huggins, Jesika Geliga-Torres, Kamden Kuykendall, David Canales, Barbara Chaparro

Publications

The intuitive interaction capabilities of augmented reality make it ideal for solving complex 3D problems that require complex spatial representations, which is key for astrodynamics and space mission planning. By implementing common and complex orbital mechanics algorithms in augmented reality, a hands-on method for designing orbit solutions and spacecraft missions is created. This effort explores the aforementioned implementation with the Microsoft Hololens 2 as well as its applications in industry and academia. Furthermore, a human-centered design process and study are utilized to ensure the tool is user-friendly while maintaining accuracy and applicability to higher-fidelity problems.


Experimental Analysis Of The Integrated High-Lift Propulsor, Robert W. Deters, Byron Ward, Shreyas Narsipur Jan 2024

Experimental Analysis Of The Integrated High-Lift Propulsor, Robert W. Deters, Byron Ward, Shreyas Narsipur

Publications

Wind tunnel testing was conducted to evaluate the performance of the Integrated High Lift Propulsor (IHLP), a novel Distributed Electric Propulsion (DEP) system. The IHLP integrates traditional Krueger flap/slat elements with a Distributed Electric Propulsion design, enhancing high lift performance and cruise efficiency compared to conventional pylon-mounted DEP configurations. Starting from a baseline configuration determined from pretest Computational Fluid Dynamics (CFD) analyses, a parametric study was performed to determine the influence on the aerodynamic characteristics (𝐶𝑙 , 𝐶𝑥, and 𝐶𝑚). The study involved variations in flap settings, slat angles, overlap, propeller tilt, and propeller position. The impact of Reynolds number, …


Experimental Environmental Profiles And Sloshing Dynamics Aboard Zero-G Aircraft, Pedro J. Llanos, Sathya Gangadharan, Kevin Crosby Jan 2024

Experimental Environmental Profiles And Sloshing Dynamics Aboard Zero-G Aircraft, Pedro J. Llanos, Sathya Gangadharan, Kevin Crosby

Publications

This study presents the results of a parabolic flight experiment to study the sloshing dynamics of the magneto-active propellant management device experiment. This device utilizes a magnetoactive membrane and magnets located external to the tank to effectively damp the liquid free surface motion. This research work establishes a benchmark with sloshing analytical formulation and sensor calibration methods that can be used to characterize future research parabolic flights while providing important environmental profiles measured during flight, such as accelerations, pitch angle, velocity, temperature, total volatile content, carbon dioxide, relative humidity, magnetic field, and radiation. Correlation between these flight variables and the …


On Progress In Exploring Controlled Viscous Limit-Cycle Oscillations In Modified Glauert Airfoil, Ethan Deweese, Lap Nguyen, Erik Vataker, William Mackunis, Vladimir Golubev, Ron Efrati, Oksana Stalnov Jan 2024

On Progress In Exploring Controlled Viscous Limit-Cycle Oscillations In Modified Glauert Airfoil, Ethan Deweese, Lap Nguyen, Erik Vataker, William Mackunis, Vladimir Golubev, Ron Efrati, Oksana Stalnov

Publications

The paper reports on the progress in the development of a novel robust, nonlinear flow control technology that employs an array of synthetic-jet actuators (SJAs) embedded in 2-DOF, elastically mounted, optimized Modified Glauert (MG) airfoil design in order to control limit cycle oscillations (LCO) at low subsonic flow regimes. The focus here is on the conceptual design of the wind energy harvesting system that employs, e.g., a piezoelectric device to extract energy from plunging LCO, with the closed-loop controller being capable to sustain the required LCO amplitudes over a wide range of wind speeds. The current high-fidelity studies first include …


Evaluating The Effectiveness Of Game-Based Virtual Reality In Satellite Ground Control Operations Education And Training, Lana Laskey, Joseph R. Keebler, Paul M. Cairns, Geovanny Lopez Jan 2024

Evaluating The Effectiveness Of Game-Based Virtual Reality In Satellite Ground Control Operations Education And Training, Lana Laskey, Joseph R. Keebler, Paul M. Cairns, Geovanny Lopez

International Journal of Aviation, Aeronautics, and Aerospace

There is increased global demand for satellite amenities such as navigation, communications, weather reporting, disaster management, agricultural operations, or humanitarian assistance. The growing demand for satellite technology amplifies the need for highly trained satellite operators. Traditional simulation training methods typically utilize two-dimensional computer displays. However, training approaches involving game-based instruction and immersive virtual reality have shown benefits when integrated with complex disciplines and may provide an advanced training alternative for satellite operators. Game-based instruction enhances user motivation and cognitive engagement, while immersive virtual reality promotes user presence and prolonged cognitive engagement. The combination of these two training methods, noted as …


Interpersonal Skills In A Sociotechnical System: A Training Gap In Flight Decks, Kimberly Perkins Atp, Fraes, Sourojit Ghosh, Crystal Hall Phd Jan 2024

Interpersonal Skills In A Sociotechnical System: A Training Gap In Flight Decks, Kimberly Perkins Atp, Fraes, Sourojit Ghosh, Crystal Hall Phd

Journal of Aviation/Aerospace Education & Research

This research analyzed the perceptions of interpersonal skills on established aviation safety models, Crew Resource Management (CRM), and Threat and Error Management (TEM) using feedback from industry pilots. The flight deck is a sociotechnical system where much research has focused on the technical aspect, whereas we spotlight its socio aspect. The aviation industry must invest in training pilots on interpersonal skills to enhance safety through increased efficacy of safety models integrated throughout existing training programs. A 34-question survey was disseminated across both commercial and business aviation pilots (N=822). We explored three research questions regarding pilots’ perceived training on interpersonal skills …


Integrated Organizational Machine Learning For Aviation Flight Data, Michael J. Pritchard Ph.D., Austin T. Walden Ph.D., Paul J. Thomas Ph.D. Jan 2024

Integrated Organizational Machine Learning For Aviation Flight Data, Michael J. Pritchard Ph.D., Austin T. Walden Ph.D., Paul J. Thomas Ph.D.

Journal of Aviation/Aerospace Education & Research

Increased availability of data and computing power has allowed organizations to apply machine learning techniques to various fleet monitoring activities. Additionally, our ability to acquire aircraft data has increased due to the miniaturization of small form factor computing machines. Aircraft data collection processes contain many data features in the form of multivariate time series (continuous, discrete, categorical, etc.) which can be used to train machine learning models. Yet, three major challenges still face many flight organizations: 1) integration and automation of data collection frameworks, 2) data cleanup and preparation, and 3) developing an embedded machine learning framework. Data cleanup and …


Artificial Intelligence-Assisted Inertial Geomagnetic Passive Navigation, Andrei Cuenca Dec 2023

Artificial Intelligence-Assisted Inertial Geomagnetic Passive Navigation, Andrei Cuenca

Doctoral Dissertations and Master's Theses

In recent years, the integration of machine learning techniques into navigation systems has garnered significant interest due to their potential to improve estimation accuracy and system robustness. This doctoral dissertation investigates the use of Deep Learning combined with a Rao-Blackwellized Particle Filter for enhancing geomagnetic navigation in airborne simulated missions.

A simulation framework is developed to facilitate the evaluation of the proposed navigation system. This framework includes a detailed aircraft model, a mathematical representation of the Earth's magnetic field, and the incorporation of real-world magnetic field data obtained from online databases. The setup allows an accurate assessment of the performance …


Deep-Learning Based Multiple-Model Bayesian Architecture For Spacecraft Fault Estimation, Rocio Jado Puente Dec 2023

Deep-Learning Based Multiple-Model Bayesian Architecture For Spacecraft Fault Estimation, Rocio Jado Puente

Doctoral Dissertations and Master's Theses

This thesis presents recent findings regarding the performance of an intelligent architecture designed for spacecraft fault estimation. The approach incorporates a collection of systematically organized autoencoders within a Bayesian framework, enabling early detection and classification of various spacecraft faults such as reaction-wheel damage, sensor faults, and power system degradation.

To assess the effectiveness of this architecture, a range of performance metrics is employed. Through extensive numerical simulations and in-lab experimental testing utilizing a dedicated spacecraft testbed, the capabilities and accuracy of the proposed intelligent architecture are analyzed. These evaluations provide valuable insights into the architecture's ability to detect and classify …


Verification And Validation Of Robot Manipulator Adaptive Control With Actuator Deficiency, Sebastian Comeaux Dec 2023

Verification And Validation Of Robot Manipulator Adaptive Control With Actuator Deficiency, Sebastian Comeaux

Doctoral Dissertations and Master's Theses

This work addresses the joint tracking problem of robotic manipulators with uncertain dynamical parameters and actuator deficiencies, in the form of an uncertain control effectiveness matrix, through adaptive control design, simulation, and experimentation. Specifically, two novel adaptive controller formulations are implemented and tested via simulation and experimentation. The proposed adaptive control formulations are designed to compensate for uncertainties in the dynamical system parameters as well as uncertainties in the control effectiveness matrix that pre-multiplies the control input. The uncertainty compensation of the dynamical parameters is achieved via the use of the desired model compensation–based adaptation, while the uncertainties related to …