Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Development And Deployment Of A Dynamic Soaring Capable Uav Using Reinforcement Learning, Jacob Adamski Dec 2022

Development And Deployment Of A Dynamic Soaring Capable Uav Using Reinforcement Learning, Jacob Adamski

Doctoral Dissertations and Master's Theses

Dynamic soaring (DS) is a bio-inspired flight maneuver in which energy can be gained by flying through regions of vertical wind gradient such as the wind shear layer. With reinforcement learning (RL), a fixed wing unmanned aerial vehicle (UAV) can be trained to perform DS maneuvers optimally for a variety of wind shear conditions. To accomplish this task, a 6-degreesof- freedom (6DoF) flight simulation environment in MATLAB and Simulink has been developed which is based upon an off-the-shelf unmanned aerobatic glider. A combination of high-fidelity Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) in ANSYS Fluent and low-fidelity vortex lattice (VLM) …


Influence Of Wing Planform Shape On The Effectiveness Of A Fixed-Slot, Yuan Zhao Apr 2022

Influence Of Wing Planform Shape On The Effectiveness Of A Fixed-Slot, Yuan Zhao

Doctoral Dissertations and Master's Theses

This thesis report explores the effect of the Clark-Y wing geometry on lift and drag to use as a reference during aircraft design stage. The different characteristics investigated are fixed slot span, taper ratio, washout, and sweep angle. Plain wings, half slotted wings, and fully slotted wings were built in CATIA with an aspect ratio of 6 and different taper ratio, washout, and sweep angles. Using the CATIA models to generate the 3-D grids in Pointwise. All the simulations were tested in Ansys-Fluent under sea-level conditions with a Reynold number of 609000. The relationships between the aerodynamic characteristics and the …


Aerodynamic Analysis Of Damage State Missiles Using Overset Meshing Techniques For Application To Computational Fluid Dynamics Simulation, Jonathan A. D'Alessio Jan 2022

Aerodynamic Analysis Of Damage State Missiles Using Overset Meshing Techniques For Application To Computational Fluid Dynamics Simulation, Jonathan A. D'Alessio

Graduate Theses, Dissertations, and Problem Reports

Significant research over the years has aimed to redefine the flight capabilities of aircraft after sustaining structural damage to critical components. Flight survivability and controllability are key areas of concern when designing fault-tolerant flight control systems to handle a wide range of potential scenarios. However, there is a lack of research on the impact of physically damaged missile systems. Missile counter-defense and intercept capabilities have become more advanced as the United States has focused heavily on these areas over the years. Damaged missiles due to a kinetic intercept capability present an opportunity for analysis of the post-damage implications on flight …