Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Investigation Of Predicted Helicopter Rotorhub Drag And Wake Flow With Reduced Order Modeling, Tristan David Wall Dec 2020

Investigation Of Predicted Helicopter Rotorhub Drag And Wake Flow With Reduced Order Modeling, Tristan David Wall

Masters Theses

The rotor hub is one of the most important components of the modern helicopter. This complex collection of linkages and plates has numerous responsibilities, including the translation of pilot input to system response, anchoring the blades to the rotor mast, and sustaining the various forces transmitted by the blades. Due its intricate design and relatively small sized components the rotor hub interacts with the incoming flow to create a highly chaotic, turbulent wake which impinges on the fuselage and empennage. This assembly has also been found to be one of the primary contributors to the total vehicle parasite drag. Unfortunately …


An Experimental Investigation Of High-Speed Air-Breathing Vehicle Performance Metrics, Katherine M. Stamper Dec 2020

An Experimental Investigation Of High-Speed Air-Breathing Vehicle Performance Metrics, Katherine M. Stamper

Masters Theses

High-speed air-breathing vehicles are one of the main hypersonic vehicles currently being developed. There is a current push by major world powers to develop these vehicles and one of the major limiting factors is engine design. The high-speed air-breathing vehicles necessitate an engine that can perform at higher speeds and higher temperatures, such as a scramjet. This engine is broken into three main parts: the inlet, isolator, and combustor. One of the primary concerns for these vehicles is engine unstart, which is when there is no longer supersonic flow through the engine and the engine can no longer perform. This …


Optical Measurements Of Viscous Interactions On A Hollow-Cylinder / Flare In A Mach 4 Freestream, Jack William Cobourn Dec 2020

Optical Measurements Of Viscous Interactions On A Hollow-Cylinder / Flare In A Mach 4 Freestream, Jack William Cobourn

Masters Theses

Despite decades of research, shock-wave/boundary-layer interactions and laminar-turbulent transition remain uncertainties in the design of hypersonic vehicles. Due to the significant demand for hypersonic capabilities and the relevance of these flow physics to air-breathing, high-lift, hypersonic vehicles, continued study is necessary. In order to support such study at the University of Tennessee Space Institute, two optical diagnostics were investigated for use in the Mach 4 Ludwig tube at the Tennessee Aerothermal Laboratory, focused laser differential interferometry and schlieren. Significant attention was given to the theory behind and application of focused laser differential interferometry to support future work at the University …


Numerical Investigation Of Leading-Edge Modifications Of A Naca Airfoil, Anisur Rahman Ikram Apr 2020

Numerical Investigation Of Leading-Edge Modifications Of A Naca Airfoil, Anisur Rahman Ikram

Masters Theses

A parametric investigation was carried out to understand the flow characteristics of tubercle airfoils and to determine the best approach and parameters for designing a tubercle airfoil. For this purpose, a straight edge base airfoil (NACA 4414) and several tubercle airfoils, by modifying the leading edge of the base airfoil, were created in SolidWorks and tested with Computational Fluid Dynamics (CFD) application software Star CCM+.

Alternative tubercle airfoil with elliptical bumps demonstrated superior post-stall performance when compared to their straight edge counterparts; their post-stall lift did not decrease drastically. However, their pre-stall lift coefficients were always lower than the base …


Comparison Of Reynolds-Averaged Navier-Stokes Turbulence Models For Simulating Boundary Layers In Hypersonic Flows, Jorge-Valentino Kurose Bretzke Jan 2020

Comparison Of Reynolds-Averaged Navier-Stokes Turbulence Models For Simulating Boundary Layers In Hypersonic Flows, Jorge-Valentino Kurose Bretzke

Masters Theses

“This study describes the use of Computational Fluid Dynamics (CFD) codes to simulate hypersonic boundary layers using several different turbulent closure models and comparing Reynolds-Averaged Navier-Stokes (RANS) simulations against Direct Numerical Simulations (DNS) of similar test cases. The test cases in this study consist of a flat plate in a Mach 8 freestream with a zero pressure gradient and wall recovery ratio of 0.48, as well as a Mach 8 axisymmetric nozzle also with a cold wall. The RANS models used in this study are the Spalart-Allmaras model, Baldwin-Lomax model, Menter K-Omega Baseline and Menter K-Omega Shear Stress Transport models. …