Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Analysis Of A Non-Equilibrium Vortex Pair As Aircraft Trailing Vortices, Manuel Ayala Jul 2021

Analysis Of A Non-Equilibrium Vortex Pair As Aircraft Trailing Vortices, Manuel Ayala

Mechanical & Aerospace Engineering Theses & Dissertations

Shortly after the roll-up evolution of the vortex sheet behind the wings of an aircraft, a coherent counter-rotating vortex pair emerges. Presence of this vortex pair in the downstream of an aircraft, creates unsafe conditions for other aircraft, especially near airport runways. Fundamental knowledge of the physics that govern the formation, duration and dissipation of aircraft wake vortices is desirable in order to improve aircraft operational safety. This study uses non-equilibrium pressure theory to develop an accurate model describing the physical behavior of the vortex pair created by an aircraft in the early to mid-field vortex regime. An isolated aircraft …


A New Method For Estimating The Physical Characteristics Of Martian Dust Devils, Shelly Cahoon Mann Apr 2021

A New Method For Estimating The Physical Characteristics Of Martian Dust Devils, Shelly Cahoon Mann

Mechanical & Aerospace Engineering Theses & Dissertations

Critical to the future exploration of Mars is having a detailed understanding of the atmospheric environment and its potential dangers. The dust devil is one of these potential dangers. The transport of dust through saltation is believed to be the driving mechanism responsible for Martian weather patterns. The two primary mechanisms for dust transport are dust storms and dust devils. Dust devils on Mars are a frequent occurrence with one in five so called giant dust devils being large enough to leave scars on the surface that are visible from space. Due to the thin atmosphere, winds of 60 mph …


Fluid-Wall Interactions In Pseudopotential Lattice Boltzmann Models, Cheng Peng, Luis F. Ayala, Orlando M. Ayala Jan 2021

Fluid-Wall Interactions In Pseudopotential Lattice Boltzmann Models, Cheng Peng, Luis F. Ayala, Orlando M. Ayala

Engineering Technology Faculty Publications

Designing proper fluid-wall interaction forces to achieve proper wetting conditions is an important area of interest in pseudopotential lattice Boltzmann models. In this paper, we propose a modified fluid-wall interaction force that applies for pseudopotential models of both single-component fluids and partially miscible multicomponent fluids, such as hydrocarbon mixtures. A reliable correlation that predicts the resulting liquid contact angle on a flat solid surface is also proposed. This correlation works well over a wide variety of pseudopotential lattice Boltzmann models and thermodynamic conditions.


Time Domain Boundary Element Method Prediction Of Noise Shielding By A Naca 0012 Airfoil, Douglas M. Nark, Fang Q. Hu Jan 2021

Time Domain Boundary Element Method Prediction Of Noise Shielding By A Naca 0012 Airfoil, Douglas M. Nark, Fang Q. Hu

Mathematics & Statistics Faculty Publications

As aircraft noise constraints become more stringent and the number/mixture of aircraft configurations grows, it becomes more important to understand the interaction of individual aircraft noise sources with nearby aircraft structures. Understanding these interactions and exploring possible approaches to mitigate or exploit their acoustic impact is essential for overcoming key noise barriers. This paper describes the further validation of a time domain boundary element approach for the prediction of the interactions between incident noise sources and nearby aircraft structures. Predictions were completed for multiple source locations and comparisons of these results with measured data are presented. Overall, very good agreement …


Non-Equilibrium Behavior Of Large-Scale Axial Vortex Cores, Robert L. Ash, Irfan R. Zardadkhan Jan 2021

Non-Equilibrium Behavior Of Large-Scale Axial Vortex Cores, Robert L. Ash, Irfan R. Zardadkhan

Mechanical & Aerospace Engineering Faculty Publications

A logical basis for incorporating pressure non-equilibrium and turbulent eddy viscosity in an incompressible vortex model is presented. The infrasonic acoustic source implied in our earlier work has been examined. Finally, this non-equilibrium turbulent vortex core is shown to dissipate mechanical energy more slowly than a Burgers vortex, helping us to explain the persistence of axial vortices in nature. Recent molecular dynamics simulations replicate aspects of this non-equilibrium pressure behavior.