Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 27 of 27

Full-Text Articles in Engineering

Comparison Of Dynamics Stability Testing Techniques With Magnetic Suspension Wind Tunnel Capabilities, Otoniel A. Ramirez, Mark Schoenenberger, David E. Cox, Colin P. Britcher Jan 2023

Comparison Of Dynamics Stability Testing Techniques With Magnetic Suspension Wind Tunnel Capabilities, Otoniel A. Ramirez, Mark Schoenenberger, David E. Cox, Colin P. Britcher

Mechanical & Aerospace Engineering Faculty Publications

Dynamic stability testing techniques currently utilized at NASA Langley Research Center (LaRC) are conducted in multiple facilities and consists of free flight, forced oscillation, and free-to-oscillate tests. The NASA/ODU Magnetic Suspension and Balance System (MSBS) has been recommissioned to explore its utility as an additional facility to expand the dynamic stability test capabilities currently available at NASA LaRC. Simulations were created to replicate each current test facility and method as closely as possible. Data collected from the simulated environments was corrupted with replicated noise sources of the different testing environments and then compared to real data collected during tests when …


Convolutional-Neural-Network-Based Des-Level Aerodynamic Flow Field Generation From Urans Data, John P. Romano, Oktay Baysal, Alec C. Brodeur Jan 2023

Convolutional-Neural-Network-Based Des-Level Aerodynamic Flow Field Generation From Urans Data, John P. Romano, Oktay Baysal, Alec C. Brodeur

Mechanical & Aerospace Engineering Faculty Publications

The present paper culminates several investigations into the use of convolutional neural networks (CNNs) as a post-processing step to improve the accuracy of unsteady Reynolds-averaged Navier–Stokes (URANS) simulations for subsonic flows over airfoils at low angles of attack. Time-averaged detached eddy simulation (DES)-generated flow fields serve as the target data for creating and training CNN models. CNN post-processing generates flow-field data comparable to DES resolution, but after using only URANS-level resources and properly training CNN models. This document outlines the underlying theory and progress toward the goal of improving URANS simulations by looking at flow predictions for a class of …


Optimization Of Ported Cfd Kernels On Intel Data Center Gpu Max 1550 Using Oneapi Esimd, Mohammad Zubair, Aaron Walden, Gabriel Nastac, Eric Nielsen, Christoph Bauinger, Xiao Zhu Jan 2023

Optimization Of Ported Cfd Kernels On Intel Data Center Gpu Max 1550 Using Oneapi Esimd, Mohammad Zubair, Aaron Walden, Gabriel Nastac, Eric Nielsen, Christoph Bauinger, Xiao Zhu

Computer Science Faculty Publications

We describe our experience porting FUN3D’s CUDA-optimized kernels to Intel oneAPI SYCL.We faced several challenges, including foremost the suboptimal performance of the oneAPI code on Intel’s new data center GPU. Suboptimal performance of the oneAPI code was due primarily to high register spills, memory latency, and poor vectorization. We addressed these issues by implementing the kernels using Intel oneAPI’s Explicit SIMD SYCL extension (ESIMD) API. The ESIMD API enables the writing of explicitly vectorized kernel code, gives more precise control over register usage and prefetching, and better handles thread divergence compared to SYCL. The ESIMD code outperforms the optimized SYCL …


Jet Noise Reduction: A Fresh Start, Christopher K. Tam, Fang Q. Hu Jan 2023

Jet Noise Reduction: A Fresh Start, Christopher K. Tam, Fang Q. Hu

Mathematics & Statistics Faculty Publications

Attempts to reduce jet noise began some 70 years ago. In the literature, there have been many publications written on this topic. By now, it is common knowledge that jet noise consists of a number of components. They possess different spectral and radiation characteristics and are generated by different mechanisms. It appears then that one may aim at the suppression of the noise of a single component instead of trying to reduce jet noise overall. The objective of the present project is to reduce large turbulence structures noise. It is the most dominant noise component radiating in the downstream direction. …


Topologically Optimized Electrodes For Electroosmotic Actuation, Jianwen Sun, Jianyu Zhang, Ce Guan, Teng Zhou, Shizhi Qian, Yongbo Deng Jan 2023

Topologically Optimized Electrodes For Electroosmotic Actuation, Jianwen Sun, Jianyu Zhang, Ce Guan, Teng Zhou, Shizhi Qian, Yongbo Deng

Mechanical & Aerospace Engineering Faculty Publications

Electroosmosis is one of the most used actuation mechanisms for the microfluidics in the current active lab-on-chip devices. It is generated on the induced charged microchannel walls in contact with an electrolyte solution. Electrode distribution plays the key role on providing the external electric field for electroosmosis, and determines the performance of electroosmotic microfluidics. Therefore, this paper proposes a topology optimization approach for the electrodes of electroosmotic microfluidics, where the electrode layout on the microchannel wall can be determined to achieve designer desired microfluidic performance. This topology optimization is carried out by implementing the interpolation of electric insulation and electric …


Underwater Communication Acoustic Transducers: A Technology Review, Laila Shams, Tian-Bing Xu, Zhongqing Su (Ed.), Branko Glisic (Ed.), Maria Pina Limongelli (Ed.) Jan 2023

Underwater Communication Acoustic Transducers: A Technology Review, Laila Shams, Tian-Bing Xu, Zhongqing Su (Ed.), Branko Glisic (Ed.), Maria Pina Limongelli (Ed.)

Mechanical & Aerospace Engineering Faculty Publications

This paper provides a comprehensive review on transducer technologies for underwater communications. The popularly used communication transducers, such as piezoelectric acoustic transducers, electromagnetic acoustic transducers, and acousto-optic devices are reviewed in detail. The reasons that common air communication technologies are invalid die to the differences between the media of air and water are addresses. Because of the abilities to overcome challenges the complexity of marine environments, piezoelectric acoustic transducers are playing the major underwater communication roles for science, surveillance, and Naval missions. The configuration and material properties of piezoelectric transducers effects on signal output power, beamwidth, amplitude, and other properties …


Numerical Study Of The Time-Periodic Electroosmotic Flow Of Viscoelastic Fluid Through A Short Constriction Microchannel, Jianyu Ji, Shizhi Qian, Armani Marie Parker, Xiaoyu Zhang Jan 2023

Numerical Study Of The Time-Periodic Electroosmotic Flow Of Viscoelastic Fluid Through A Short Constriction Microchannel, Jianyu Ji, Shizhi Qian, Armani Marie Parker, Xiaoyu Zhang

Mechanical & Aerospace Engineering Faculty Publications

Electroosmotic flow (EOF) is of utmost significance due to its numerous practical uses in controlling flow at micro/nanoscales. In the present study, the time-periodic EOF of a viscoelastic fluid is statistically analyzed using a short 10:1 constriction microfluidic channel joining two reservoirs on either side. The flow is modeled using the Oldroyd-B (OB) model and the Poisson-Boltzmann model. The EOF of a highly concentrated polyacrylamide (PAA) aqueous solution is investigated under the combined effects of an alternating current (AC) electric field and a direct current (DC) electric field. Power-law degradation is visible in the energy spectra of the velocity fluctuations …


Editorial For The Special Issue On Micromachines For Non-Newtonian Microfluidics, Lanju Mei, Shizhi Qian Jan 2022

Editorial For The Special Issue On Micromachines For Non-Newtonian Microfluidics, Lanju Mei, Shizhi Qian

Mechanical & Aerospace Engineering Faculty Publications

In lieu of an abstract, this is an excerpt from the first page.

Microfluidics has seen a remarkable growth over the past few decades, with its extensive applications in engineering, medicine, biology, chemistry, etc [...]


On The Implementation And Further Validation Of A Time Domain Boundary Element Method Broadband Impedance Boundary Condition, Fang Q. Hu, Douglas M. Nark Jan 2022

On The Implementation And Further Validation Of A Time Domain Boundary Element Method Broadband Impedance Boundary Condition, Fang Q. Hu, Douglas M. Nark

Mathematics & Statistics Faculty Publications

A time domain boundary integral equation with Burton-Miller reformulation is presented for acoustic scattering by surfaces with liners in a uniform mean flow. The Ingard-Myers impedance boundary condition is implemented using a broadband multipole impedance model and converted into time domain differential equations to augment the boundary integral equation. The coupled integral-differential equations are solved numerically by a March-On-in-Time (MOT) scheme. While the Ingard-Myers condition is known to support Kelvin-Helmholtz instability due to its use of a vortex sheet interface between the flow and the liner surface, it is found that by neglecting a second derivative term in the current …


Experiences During The Implementation Of Two Different Project-Based Learning Assignments In A Fluid Mechanics Course., Orlando Ayala, Kristie Gutierrez, Francisco Cima, Julia Noginova, Min Jung Lee, Stacie Ringleb, Pilar Pazos, Krishnanand Kaipa, Jennifer Kidd Jan 2022

Experiences During The Implementation Of Two Different Project-Based Learning Assignments In A Fluid Mechanics Course., Orlando Ayala, Kristie Gutierrez, Francisco Cima, Julia Noginova, Min Jung Lee, Stacie Ringleb, Pilar Pazos, Krishnanand Kaipa, Jennifer Kidd

Engineering Technology Faculty Publications

There is growing evidence of the effectiveness of project-based learning (PBL) in preparing students to solve complex problems. In PBL implementations in engineering, students are treated as professional engineers facing projects centered around real-world problems, including the complexity and uncertainty that influence such problems. Not only does this help students to analyze and solve an authentic real-world task, promoting critical thinking, but also students learn from each other, learning valuable communication and teamwork skills. Faculty play an important part by assuming non-conventional roles (e.g., client, senior professional engineer, consultant) to help students throughout this instructional and learning approach. Typically in …


Recent Analytic Development Of The Dynamic Q-Tensor Theory For Nematic Liquid Crystals, Xiang Xu Jan 2022

Recent Analytic Development Of The Dynamic Q-Tensor Theory For Nematic Liquid Crystals, Xiang Xu

Mathematics & Statistics Faculty Publications

Liquid crystals are a typical type of soft matter that are intermediate between conventional crystalline solids and isotropic fluids. The nematic phase is the simplest liquid crystal phase, and has been studied the most in the mathematical community. There are various continuum models to describe liquid crystals of nematic type, and Q-tensor theory is one among them. The aim of this paper is to give a brief review of recent PDE results regarding the Q-tensor theory in dynamic configurations.


Fluid-Wall Interactions In Pseudopotential Lattice Boltzmann Models, Cheng Peng, Luis F. Ayala, Orlando M. Ayala Jan 2021

Fluid-Wall Interactions In Pseudopotential Lattice Boltzmann Models, Cheng Peng, Luis F. Ayala, Orlando M. Ayala

Engineering Technology Faculty Publications

Designing proper fluid-wall interaction forces to achieve proper wetting conditions is an important area of interest in pseudopotential lattice Boltzmann models. In this paper, we propose a modified fluid-wall interaction force that applies for pseudopotential models of both single-component fluids and partially miscible multicomponent fluids, such as hydrocarbon mixtures. A reliable correlation that predicts the resulting liquid contact angle on a flat solid surface is also proposed. This correlation works well over a wide variety of pseudopotential lattice Boltzmann models and thermodynamic conditions.


Time Domain Boundary Element Method Prediction Of Noise Shielding By A Naca 0012 Airfoil, Douglas M. Nark, Fang Q. Hu Jan 2021

Time Domain Boundary Element Method Prediction Of Noise Shielding By A Naca 0012 Airfoil, Douglas M. Nark, Fang Q. Hu

Mathematics & Statistics Faculty Publications

As aircraft noise constraints become more stringent and the number/mixture of aircraft configurations grows, it becomes more important to understand the interaction of individual aircraft noise sources with nearby aircraft structures. Understanding these interactions and exploring possible approaches to mitigate or exploit their acoustic impact is essential for overcoming key noise barriers. This paper describes the further validation of a time domain boundary element approach for the prediction of the interactions between incident noise sources and nearby aircraft structures. Predictions were completed for multiple source locations and comparisons of these results with measured data are presented. Overall, very good agreement …


Non-Equilibrium Behavior Of Large-Scale Axial Vortex Cores, Robert L. Ash, Irfan R. Zardadkhan Jan 2021

Non-Equilibrium Behavior Of Large-Scale Axial Vortex Cores, Robert L. Ash, Irfan R. Zardadkhan

Mechanical & Aerospace Engineering Faculty Publications

A logical basis for incorporating pressure non-equilibrium and turbulent eddy viscosity in an incompressible vortex model is presented. The infrasonic acoustic source implied in our earlier work has been examined. Finally, this non-equilibrium turbulent vortex core is shown to dissipate mechanical energy more slowly than a Burgers vortex, helping us to explain the persistence of axial vortices in nature. Recent molecular dynamics simulations replicate aspects of this non-equilibrium pressure behavior.


Toward Adjoint-Based Aeroacoustic Optimization For Propeller And Rotorcraft Applications, Ramiz Ö. Içke, Oktay Baysal, Andy Moy, Leonard V. Lopes, Beckett Zhou, Boris Diskin Jan 2020

Toward Adjoint-Based Aeroacoustic Optimization For Propeller And Rotorcraft Applications, Ramiz Ö. Içke, Oktay Baysal, Andy Moy, Leonard V. Lopes, Beckett Zhou, Boris Diskin

Mechanical & Aerospace Engineering Faculty Publications

The goal of the present project is to build a multidisciplinary, rapid, robust, and accurate computational tool to optimize wing-mounted propeller designs. The full Farassat’s formulation F1A for aeroacoustic analysis is implemented in the open-source software SU2. This extension enables the prediction of far-field noise generated by moving sources. The formulation is verified, for a stationary and rotating sphere in a wind tunnel and for a tiltrotor in forward flight, by comparing the acoustic predictions of SU2 with the predictions computed by NASA’s aeroacoustics code ANOPP2. The algorithmic differentiation capability of SU2 provides discretely consistent, adjoint-based sensitivity analysis for this …


Wake Vortex Pair Formation As An Analog For Dust Devil And Tornado Genesis, Robert L. Ash Jan 2019

Wake Vortex Pair Formation As An Analog For Dust Devil And Tornado Genesis, Robert L. Ash

Mechanical & Aerospace Engineering Faculty Publications

In 1966, meteorologist R.S. Scorer attempted to explain how large-scale oceanic tropical depressions become hurricanes or typhoons. His model was based on the idea that when these large-scale tropical depression structures begin to rotate, mostly due to Coriolis effects, an annular outer portion of that structure changes suddenly to a potential vortex segment, with the same outer radial limit as the low-pressure structure, but with an inner radius that conserves the overall system angular momentum and kinetic energy. By analogy with the "jump" instability describing sudden buckling of a vertical column, this paper shows that his conjecture merits additional consideration. …


Quantitative Assessment Of Secondary Flows Of Single-Phase Fluid Through Pipe Bends, Z. Kaldy, O. Ayala Jan 2016

Quantitative Assessment Of Secondary Flows Of Single-Phase Fluid Through Pipe Bends, Z. Kaldy, O. Ayala

Engineering Technology Faculty Publications

Single-phase fluid flow was simulated passing through various three dimensional pipe elbows. The simulations varied by Reynolds number, curvature ratios, and sweep angles and were all conducted using the k-e model available in COMSOL Multiphysics 5.1. The intent of this research was to qualitatively assess the flow characteristics under several different conditions. Many similarities were seen especially when comparing curvature ratios, the vorticity location for the turbulent cases show near identical behavior at the elbow midsection. One of the variables quantified in this paper is the maximum secondary velocity module which shows increasing values until the midsection of the elbow.


Secondary Flow Of Liquid-Liquid Two-Phase Fluids In A Pipe Bend, M. Ayala, P. Santos, G. Hamester, O. Ayala Jan 2016

Secondary Flow Of Liquid-Liquid Two-Phase Fluids In A Pipe Bend, M. Ayala, P. Santos, G. Hamester, O. Ayala

Engineering Technology Faculty Publications

A simulated study of oil and water in 90 degree bend was carried on COMSOL 5.1 to characterize flow pattern and analyze the secondary flow. The Euler-Euler k-e Reynolds Averaged Navier-Stokes model was used to represent the fluid motion. Changes in the Reynolds number, curvature ratio and direction of gravity were made to evaluate the effects in the intensity of the secondary flow. In the end, it was possible to see that the bend direction does not affect the formation of secondary flow for Reynolds above 100,000. It appears that the fluid behavior on the pipe bend is strongly related …


First-Year Project Experience In Aerospace: Apogee Determination Of Model Rockets With Explicit Consideration Of Drag Effect, Hüseyin Sarper, Drew Landman, Linda Vahala Jan 2016

First-Year Project Experience In Aerospace: Apogee Determination Of Model Rockets With Explicit Consideration Of Drag Effect, Hüseyin Sarper, Drew Landman, Linda Vahala

Electrical & Computer Engineering Faculty Publications

This paper describes a student team project using model rockets and engines to learn engineering solution methods for determining the apogee of model rocket when the drag effect is considered explicitly instead of estimating its effect later. Model rocketry is a powerful tool for instructors who wish to incorporate science, engineering, and mathematics into a fun, engaging, and challenging activity for the students. The apogee can be determined using a number of distinct methods: trigonometry, onboard altimeters, analytical calculations, and simulation. This paper emphasizes numerical analytical solution using spreadsheet programming instead of a full analytical solution that requires higher mathematics. …


Use Of Single Stage Model Rockets To Teach Some Engineering Principles And Practices To First Year Engineering And Engineering Technology Students, Hüseyin Sarper, Linda Vahala Jan 2015

Use Of Single Stage Model Rockets To Teach Some Engineering Principles And Practices To First Year Engineering And Engineering Technology Students, Hüseyin Sarper, Linda Vahala

Electrical & Computer Engineering Faculty Publications

Model rocketry has been called miniature astronautics; a technology in miniature, a hobby, a sport, a technological recreation, an educational tool, and it is all of these things. This paper will describe student projects using model rockets and engines to learn engineering principles for launching rockets and determining the apogee. Model rocketry is a powerful tool for instructors who wish to incorporate science, technology, engineering, and mathematics into a fun, engaging, and challenging activity for first year engineering students. The apogee can be determined using four distinct methods: trigonometry using hand held angle measuring tools, onboard altimeter devices, analytical calculations …


Non-Equilibrium Pressure Control Of The Height Of A Large-Scale, Ground-Coupled, Rotating Fluid Column, R. L. Ash, I. R. Zardadhkan Jan 2013

Non-Equilibrium Pressure Control Of The Height Of A Large-Scale, Ground-Coupled, Rotating Fluid Column, R. L. Ash, I. R. Zardadhkan

Mechanical & Aerospace Engineering Faculty Publications

When a ground-coupled, rotating fluid column is modeled incorporating non-equilibrium pressure forces in the Navier-Stokes equations, a new exact solution results. The solution has been obtained in a similar manner to the classical equilibrium solution. Unlike the infinite-height, classical solution, the non-equilibrium pressure solution yields a ground-coupled rotating fluid column of finite height. A viscous, non-equilibrium Rankine vortex velocity distribution, developed previously, was used to demonstrate how the viscous and non-equilibrium pressure gradient forces, arising in the vicinity of the velocity gradient discontinuity that is present in the classical Rankine vortex model, effectively isolate the rotating central fluid column from …


The Influence Of Pressure Relaxation On The Structure Of An Axial Vortex, Robert L. Ash, Irfan Zardadkhan, Allan J. Zuckerwar Jan 2011

The Influence Of Pressure Relaxation On The Structure Of An Axial Vortex, Robert L. Ash, Irfan Zardadkhan, Allan J. Zuckerwar

Mechanical & Aerospace Engineering Faculty Publications

Governing equations including the effects of pressure relaxation have been utilized to study an incompressible, steady-state viscous axial vortex with specified far-field circulation. When sound generation is attributed to a velocity gradient tensor-pressure gradient product, the modified conservation of momentum equations that result yield an exact solution for a steady, incompressible axial vortex. The vortex velocity profile has been shown to closely approximate experimental vortex measurements in air and water over a wide range of circulation-based Reynolds numbers. The influence of temperature and humidity on the pressure relaxation coefficient in air has been examined using theoretical and empirical approaches, and …


Drag Reduction Of A Modern Straight Truck, Drew Landman, Matthew Cragun, Mike Mccormick, Richard Wood Jan 2011

Drag Reduction Of A Modern Straight Truck, Drew Landman, Matthew Cragun, Mike Mccormick, Richard Wood

Mechanical & Aerospace Engineering Faculty Publications

A wind tunnel test program was conducted at the Langley Full Scale Tunnel (LFST) to evaluate the performance of five passive drag reduction configurations on a modern straight truck at full scale. Configurations were tested in a build-up fashion with results representing a cumulative effect. Tested configurations include a front valance, a front box fairing, a boat-tail, an ideal side-skirt, and a practical side-skirt. Configurations were evaluated over a nominal 9 degree yaw sweep to establish wind averaged drag coefficients using SAE J1252. Genuine replicate yaw sweeps were used in an uncertainty analysis. Results show up to 28% improvement in …


Understanding Practical Limits To Heavy Truck Drag Reduction, Drew Landman, Richard Wood, Whitney Seay, John Bledsoe Jan 2009

Understanding Practical Limits To Heavy Truck Drag Reduction, Drew Landman, Richard Wood, Whitney Seay, John Bledsoe

Mechanical & Aerospace Engineering Faculty Publications

A heavy truck wind tunnel test program is currently underway at the Langley Full Scale Tunnel (LFST). Seven passive drag reducing device configurations have been evaluated on a heavy truck model with the objective of understanding the practical limits to drag reduction achievable on a modern tractor trailer through add-on devices. The configurations tested include side skirts of varying length, a full gap seal, and tapered rear panels. All configurations were evaluated over a nominal 15 degree yaw sweep to establish wind averaged drag coefficients over a broad speed range using SAE J1252. The tests were conducted by first quantifying …


Volume Viscosity In Fluids With Multiple Dissipative Processes, Allan J. Zuckerwar, Robert L. Ash Jan 2009

Volume Viscosity In Fluids With Multiple Dissipative Processes, Allan J. Zuckerwar, Robert L. Ash

Mechanical & Aerospace Engineering Faculty Publications

The variational principle of Hamilton is applied to derive the volume viscosity coefficients of a reacting fluid with multiple dissipative processes. The procedure, as in the case of a single dissipative process, yields two dissipative terms in the Navier-Stokes equation: The first is the traditional volume viscosity term, proportional to the dilatational component of the velocity; the second term is proportional to the material time derivative of the pressure gradient. Each dissipative process is assumed to be independent of the others. In a fluid comprising a single constituent with multiple relaxation processes, the relaxation times of the multiple processes are …


Variational Approach To The Volume Viscosity Of Fluids, Allan J. Zuckerwar, Robert L. Ash Jan 2006

Variational Approach To The Volume Viscosity Of Fluids, Allan J. Zuckerwar, Robert L. Ash

Mechanical & Aerospace Engineering Faculty Publications

The variational principle of Hamilton is applied to develop an analytical formulation to describe the volume viscosity in fluids. The procedure described here differs from those used in the past in that a dissipative process is represented by the chemical affinity and progress variable (sometimes called "order parameter") of a reacting species. These state variables appear in the variational integral in two places: first, in the expression for the internal energy, and second, in a subsidiary condition accounting for the conservation of the reacting species. As a result of the variational procedure, two dissipative terms appear in the Navier-Stokes equation. …


Response To "Comment On Variational Approach To The Volume Viscosity Of Fluids" [Phys. Fluids 18, 109101 (2006)], Allen J. Zuckerwar, Robert L. Ash Jan 2006

Response To "Comment On Variational Approach To The Volume Viscosity Of Fluids" [Phys. Fluids 18, 109101 (2006)], Allen J. Zuckerwar, Robert L. Ash

Mechanical & Aerospace Engineering Faculty Publications

We respond to the Comment of Markus Scholle and therewith revise our material entropy constraint to account for the production of entropy. (c) 2006 American Institute of Physics.